ITER Tritium Plant Operation and Analytical Needs

Robert Michling, Group Leader Process, Tritium Plant Section 2023-05-25

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

Outline

-
- **Outline**
1 ITER Fuel Cycle
2 Tritium Plant Systems
- **Outline**
1 ITER Fuel Cycle
2 Tritium Plant Systems
3 Operation and Analytical Requireme 1 - ITER Fuel Cycle
2 - Tritium Plant Systems
3 - Operation and Analytical Requirements
4 - Analytical Aspects "unresolved"
-

R. Michling 2023-05-25

China EU India Japan Korea Russia USA

R. Michling 2023-05-25

Fusion Reaction

First phase:

-
-

-
-
-
- o (gained fusion energy vs. external plasma heating energy) o (galiled fusion energy vs.
external plasma heating energy)
1 – ITER Fuel Cycle

Second phase:

R. Michling 2023-05-25

The ITER site

R. Michling 2023-05-25

The Tritium Plant

Fuelling and Vacuum are located close to the torus in the Tokamak building lose to the torus in the Tokamak
uilding
1 – ITER Fuel Cycle

Tritium building houses all Fuel Cycle process systems

- o Storage
- o Purification
- o Separation
- o Transfer (partially)
- o Recovery

Simplified Fuel Cycle (1st layer) **Simplified Fuel Cycle (1st layer)**
Fuel - Deuterium and Tritium .
○ Fuel Pellets for Core Fuelling

- - o Separate D and T pellets
- o Gas puffing for Edge fuelling and control
	- \circ Various gas mixture (D & T, others)
- o "Shot" fuelling and exhaust pumping
	- \circ Extraction of unburnt fuel and impurity (He ash, others)
- \circ Separation of unburnt fuel and separation of D & T → "Shot" fuelling and exhaust pumping

→ Extraction of unburnt fuel and impurity

(He ash, others)

→ Separation of unburnt fuel and separation

of D & T

→ Refuelling of D & T during the same

plasma shot

→ Closed cont
- \circ Refuelling of D & T during the same plasma shot
- defined duration (up to 3400 s) Separation of unburnt fuel and separation of D & T

Refuelling of D & T during the same

plasma shot
 \rightarrow Closed continuous fuel cycle for a

defined duration (up to 3400 s)

1 – ITER Fuel Cycle

Detailed Fuel Cycle (2nd layer) Detailed Fuel Cycle (2nd layer)
Fuel - Deuterium and Tritium .
○ Lines of Fuel supply

ron and Analytical Needs
R. Michling 2023-05-25

- - o D & T fuel
	- \circ Heating and Diagnostic Systems $\begin{array}{c} \downarrow \\ \downarrow \end{array}$
	- o Protection System (DMS)
	- o Others
- o Torus pumping by cryo-pumps
- o Neutral Beams pumping by cryopumps
- pumps

Tritium Plant for Fuel purification,

separation and supply

Plant systems for auxiliary support

1 ITER Fuel Cycle o Tritium Plant for Fuel purification, separation and supply
- o Plant systems for auxiliary support

Detailed Fuel Cycle (2nd layer) Detailed Fuel Cycle (2nd layer)
Fuel - Deuterium and Tritium .
○ Lines of Fuel supply

- - o D & T fuel
	- \circ Heating and Diagnostic Systems $\begin{array}{c} \downarrow \\ \downarrow \end{array}$
	- o Protection System (DMS)
	- o Others
- o Torus pumping by cryo-pumps
- o Neutral Beams pumping by cryopumps
- pumps

Tritium Plant for Fuel purification,

separation and supply

Plant systems for auxiliary support

2 Tritium Plant Systems \circ Tritium Plant for Fuel purification, separation and supply
- o Plant systems for auxiliary support

Detailed Fuel Cycle (2nd layer) Detailed Fuel Cycle (2nd layer)
Fuel - Deuterium and Tritium .
○ Storage & Delivery

Storage & Delivery System (SDS) Storage & Delivery System (SDS
Unit operations of SDS for main function

o Storage of Deuterium and Tritium

• Uranium Hydride Beds

• Safe storage of tritium/deuterium by form

⊙ Delivery of fuelling gases

- Storage of Deuterium and Tritium
- -
- Delivery of fuelling gases
-
- Storage & Delivery System (SI

Unit operations of SDS for main fund

 Storage of Deuterium and Tritium

・ Uranium Hydride Beds

・ Safe storage of tritium/deuterium by f

 Delivery of fuelling gases

・ Buffer tanks

・ Pr operations of SDS for main functions:

orage of Deuterium and Tritium

ranium Hydride Beds

• Safe storage of tritium/deuterium by formation of hydrides

elivery of fuelling gases

uffer tanks

• Provision of fuelling gase units) within specifications operations of SDS for main functions:

prage of Deuterium and Tritium

ranium Hydride Beds

• Safe storage of tritium/deuterium by formation of hydrides

elivery of fuelling gases

uffer tanks

• Provision of fuelling gase • Safe storage of tritium/deuterium by formation of hydrides

• Safe storage of tritium/deuterium by formation of hydrides

• Provision of fuelling gases (for torus and neutral beam

• units) within specifications

• Trans • Calc storage of the intermediated by formation of hydracs

elivery of fuelling gases

• Provision of fuelling gases (for torus and neutral beam

• units) within specifications

• Transfer gases under defined supply condi
- (composition, flow rates, pressure) • Uranium Hydride Beds
• Safe storage of tritium/deuterium by form

⊙ Delivery of fuelling gases

• Buffer tanks

• Provision of fuelling gases (for torus and

units) within specifications

• Transfer gases under defined s
- -
	-

Unit operations of SDS for main functions:

Torus Recycle

Detailed Fuel Cycle (2nd layer) Detailed Fuel Cycle (2nd layer)
Fuel - Deuterium and Tritium .
○ Tokamak Exhaust Processing

Tokamak Exhaust Processing (TEP) 55乌 **Tokamak Exhaust Processing (TEP)**

Unit operations of TEP for main functions:
 \circ Separate impurities from exhaust fuel gases

• Permeators – Permeation of Q₂ through a Pd/Ag me

• Leaves impurities in the retentate

Unit operations of TEP for main functions:

○ Separate impurities from exhaust fuel gases

- Permeators Permeation of Q_2 through a Pd/Ag membrane reparate impurities from exhaust fuel gases

ermeators – Permeation of Q_2 through a Pd/Ag membra

• Leaves impurities in the retentate stream

ryogenic Molecular Sieve Beds – Fractionation by Cryo-

• Several fractions
	-
- **amak Exhaust Processing (TEP)**
 Exhaust Processing (TEP)

operations of TEP for main functions:

parate impurities from exhaust fuel gases
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 amak Exhaust Processing (TEP)
 SEXEM

operations of TEP for main functions:

parate impurities from exhaust fuel gases

ermeators – Permeation of Q₂ through a Pd/Ag membrane

• Leaves impurities in the retentate str Unit operations of TEP for main functions:

• Separate impurities from exhaust fuel gases

• Permeators – Permeation of Q₂ through a Pd/Ag membrane

• Leaves impurities in the retentate stream

• Cryogenic Molecular Sie • Leaves impurities in the retentate stream

• Several fractions of gas species – He, Q₂, impurities

• Several fractions of gas species – He, Q₂, impurities

• COVE Tritium from chemical species

• Retain water from
	- Several fractions of gas species He, Q_2 , impurities
- Recover Tritium from chemical species
- -
- eral fractions of gas species He, Q₂, impurities

Tritium from chemical species

Molecular Sieve Beds Capture of tritiated water

ain water from process gas streams

m Membrane Reactor Tritium recovery by chemical • Retain water from process gas streams

• Palladium Membrane Reactor – Tritium

• Water-like and Air-like tritiated gas speci
 $HTO + CO \leftrightarrow HT + CO_2$ CTH₃

Water Gas Shift reaction

2 – Tritium Plant Systems
	-

 $HTO + CO \leftrightarrow HT + CO_2$ $CTH_3 + H_2O \leftrightarrow 2H_2 + HT + CO$

Palladium Membrane Reactor (unloaded)

R. Michling 2023-05-25 12

Permeator unit

Detailed Fuel Cycle (2nd layer) Detailed Fuel Cycle (2nd layer)
Fuel - Deuterium and Tritium .
○ Isotope Separation System

- Separate hydrogen isotopes
-
- **Sotope Separation System (ISS)**

 Cryo-genic Distillation of hydrogen isotopologue mixtures

 Cryo-genic Distillation of hydrogen isotopologue mixtures

 Generate H₂, D₂ and T₂ products within various specificat , D_2 and T_2 products within various specifications (compositions)
	- **ope Separation System (ISS)**

	operations of ISS for main function

	parate hydrogen isotopes

	ryo-genic Distillation of hydrogen isotop

	 Generate H₂, D₂ and T₂ products within var

	 Utilization of slight differen **ope Separation System (ISS)**
 Calculary operations of ISS for main function:

	parate hydrogen isotopes

	yo-genic Distillation of hydrogen isotopologue mixtures

	• Generate H₂, D₂ and T₂ products within various sp for the different isotopologues
- **Solope Separation System (ISS)**

Unit operations of ISS for main function:
 \circ Separate hydrogen isotopes

 Cryo-genic Distillation of hydrogen isotopologu

 Generate H₂, D₂ and T₂ products within various s

 different products on spec at different feed flows and compositions $\frac{1}{12}$

Isotope Separation System (ISS)

Unit operations of ISS for main function:

Catalyst

$HT + D₂ \rightarrow HD + DT$

2 – Tritium Plant Systems

R. Michling 2023-05-25 14

[conversion of HT]

Detailed Fuel Cycle (2nd layer) Detailed Fuel Cycle (2nd layer)
Fuel - Deuterium and Tritium .
○ Water Detritiation System

Water Detritiation System (WDS) Vater Detritiation System (WDS

hit operations of ISS for main function

Recover Tritium from water

• Water Holding Tanks

• Receive and store tritiated water (HTO)

• Electrolyser unit Vater Detritiation System (WD:

hit operations of ISS for main functi

Recover Tritium from water

• Water Holding Tanks

• Receive and store tritiated water (HTC

• Electrolyser unit

• Generate tritiated hydrogen stream Vater Detritiation System (WDS)

init operations of ISS for main functions:

Recover Tritium from water

• Water Holding Tanks

• Receive and store tritiated water (HTO) for final processing

• Electrolyser unit

• Generat

Unit operations of ISS for main functions: Fraction System (WD,

init operations of ISS for main functi

Recover Tritium from water

• Water Holding Tanks

• Receive and store tritiated water (HTC

• Electrolyser unit

• Generate tritiated hydrogen stream from Cat

- Recover Tritium from water
	-
- **Fright System (WDS)**
 Example 19 And System (WDS)
 Example 19 And System functions:
 Example 19 And System System System System System System Section
 Example 2 Receive and store tritiated water (HTO) for final p
	- -
	- -
	- - Supply pure enriched tritiated Q_2 stream to ISS
- operations of ISS for main functions:

ecover Tritium from water

Vater Holding Tanks

 Receive and store tritiated water (HTO) for final process

Electrolyser unit

 Generate tritiated hydrogen stream from HTO

Catalyti ○ Receive water from (Air) Detritiation System **• Water Holding Tanks**

• Water Holding Tanks

• Receive and store tritiated water (HTC

• Electrolyser unit

• Generate tritiated hydrogen stream from

• Detritiate hydrogen stream for final dis

• Permeator

• Supply p
	- -

R. Michling 2023-05-25 16

FREE SET (SET OF SET OF STATE OF STATE OF STATE OF SCREED ATTENUATES COVER Tritium from water

Vater Holding Tanks

• Receive and store tritiated water (HTO) for final processing

lectrolyser unit

• Generate tritiated **Example 12 Contribution System (WDS)**
 Example 12 Contract on System (WDS)

Poperations of ISS for main functions:

Vater Holding Tanks

• Receive and store tritiated water (HTO) for final processing

Electrolyser u Purification QTO $\left| \begin{array}{c} 110 \\ 1 \end{array} \right|$ QTO unit $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Tank $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ unit $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ QTO Feeding QTO Electrolyser QT HTO LAND Column Receipt & Storage $\left| A \right|$ Tanks QTO I QTO QTO the contract of \mathbb{R}^n and \mathbb{R}^n and \mathbb{R}^n are contract of \mathbb{R}^n and \math A and $\qquad \qquad \qquad$ TC-DS, Radwaste, $\begin{array}{ccc}\n\text{Kadwaste,} \\
\text{other sources}\n\end{array}$ \overline{A} Water Holding Tanks (HTA) B Front-End Treatment (FET) Electrolyser units (ELC)

Emergency tank (100 m^3) Holding tank (20 m^3) $)$

Dynamic Conditions

Sequential batch-wise torus pumps regeneration of various compositions

Buffering and controlled flow regimes within TP systems to calm the conditions during plasma operation

Simultaneous separation and control return/supply of process gases to various systems

Effluent $H2$ to Wa

Flow & composition from vacuum pumps

DT with Ne

Argon/N2 with trace DT & impurities e.g. CQ4

HTO with trace DT & impurities e.g. NQ3, QI

lion and Analytical Needs
R. Michling 2023-05-25 18

ron and Analytical Needs
R. Michling 2023-05-25 19

ron and Analytical Needs
R. Michling 2023-05-25 20

Tritium Plant Operating Conditions **Tritium Plant Operating Condit**

Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between $0.5 - 2.0$ to

• Temperatures from $20 - 25$ K via amb

• Flow rates between $15 - 320$ mol/h (1

• Compositions (Q₂) from

Hydrogen gas mixtures (fuel cycle):

-
-
- **Tritium Plant Operating Conditions**

Hydrogen gas mixtures (fuel cycle):

 Pressures ranges between 0.5 2.0 bara

 Temperatures from 20 25 K via ambient up to 700 800 K

 Flow rates between 15 320 mol/h (10 **Tritium Plant Operating Conditions**

Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between 0.5 – 2.0 bara

• Temperatures from 20 – 25 K via ambient up to 700 – 800 K

• Flow rates between 15 – 320 mol/h (10 - **Tritium Plant Operating Conditions**

Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between 0.5 – 2.0 bara

• Temperatures from 20 – 25 K via ambient up to 700 – 800 K

• Flow rates between 15 – 320 mol/h (10 - $(-) - 800 \text{ K}$
/s; 0.35 – 7.3 m³/h) Flow rates between $15 - 320$ mol/h $(10 - 200$ Pam³/s; $0.35 - 7.3$ m³/h)
- Compositions (Q_2) from pure down to traces

Tritium Plant Operating Conditions **Tritium Plant Operating Condit**

Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between $0.5 - 2.0$ to

• Temperatures from $20 - 25$ K via amb

• Throughputs between $15 - 320$ mol/h

• Compositions (Q₂) from pu **Tritium Plant Operating Conditions**

Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between $0.5 - 2.0$ bara

• Temperatures from $20 - 25$ K via ambient up

• Throughputs between $15 - 320$ mol/h $(10 - 20$

• Comp

Hydrogen gas mixtures (fuel cycle):

-
- **Hydrogen gas mixtures (fuel cycle):**

 Pressures ranges between $0.5 2.0$ bara

 Temperatures from $20 25$ K via ambient up to 700 800 K

 Throughputs between $15 320$ mol/h (10 200 Pam³/s; 0.35

 Compositio
- **Tritium Plant Operating Conditions**

Hydrogen gas mixtures (fuel cycle):

 Pressures ranges between 0.5 2.0 bara

 Temperatures from 20 25 K via ambient up to 700 800 K

 Throughputs between 15 320 mol/h (10 -**Tritium Plant Operating Conditions**

Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between 0.5 – 2.0 bara

• Temperatures from 20 – 25 K via ambient up to 700 – 800 K

• Throughputs between 15 – 320 mol/h (10 -**Tritium Plant Operating Conditions**

Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between 0.5 – 2.0 bara

• Temperatures from 20 – 25 K via ambient up to 700 – 800 K

• Throughputs between 15 – 320 mol/h (10 - (800 K)
 $\frac{1}{5}$ (0.35 – 7.3 m³/h) Throughputs between $15 - 320$ mol/h $(10 - 200$ Pam³/s; $0.35 - 7.3$ m³/h) Hydrogen gas mixtures (fuel cycle):

• Pressures ranges between 0.5 – 2.0 bara

• Temperatures from 20 – 25 K via ambient up to 700 – 800 K

• Throughputs between 15 – 320 mol/h (10 - 200 Pam³/s; 0.35 – 7.3 m³/h)

• C
- Compositions (Q_2) from pure down to traces

Tritiated water (plant operation):

-
-
-
-

ron and Analytical Needs
R. Michling 2023-05-25 24

Analytical Techniques

Accountancy Radiation Process control (routine)

protection

Liquid Scintillation Counting

Property: Decay Heat

Benefits: Absolute Activity

Drawbacks: Measuring Time, Offline
 Ionization Counting

Property: Radioactive Ionisation

Benefits: modular, in/online

Drawbacks: Gas conditions dependent
 $\frac{1}{\sqrt{2$ Property: Radioactive Ionisation Benefits: modular, in/online Drawbacks: Gas conditions dependent

Property: Radioactive Ionisation Benefits: Sensitivity, price Drawbacks: Waste, Sampling, Offline

Property: Decay Heat Benefits: Absolute Activity Drawbacks: Measuring Time, Offline

phy

25 Ites

25 Gas, Sampling Time

25 Marge ratio

25 TER Tritium Plant – Operation and Analytical Needs

25 Terminal R. Michling 2023-05-25 25

25 Terminal R. Michling 2023-05-25 25 Property: Adsorptivity Benefits: Multispecies Drawbacks: Waste Gas, Sampling Time

Ionization Counting

Laser Raman Spectroscopy

Calorimetry

Property: Polarization

Benefits: Resolution, inline and sensitivity IR Absorption Spectroscopy Property: Induced Di-pole Moments

Benefits: Inline and sensitivity Drawbacks: Waste water/gas

Gas Chromatography

Mass Spectroscopy

Property: Mass to charge ratio Benefits: online Drawbacks: Cost, low pressures

Analytical Needs

Hydrogen isotope gas mixture:

- \circ Absolute Q_2 composition (accountancy)
- \circ Relative Q_2 composition changes (process control)
- \circ Impurities in Q_2 mixtures (process control and safety)
- Long-term stable analysis equipment

- \circ Absolute Q_2 composition (accountancy)
- \circ Relative Q_2 composition changes (process control) ○ Absolute Q₂ composition (accountancy)
○ Relative Q₂ composition changes (process control)
○ Impurities in Q₂ mixtures (process control and safet
○ Inline measurements
 3 – Operation and Analytical Requirements
- \circ Impurities in Q_2 mixtures (process control and safety
- Inline measurements

Tritiated water mixture:

R. Michling 2023-05-25 26

http://www.tyne-engineering.com/ Tritium%20Controller.html [2022]

https://www.mks.com/#mz-expanded-view-1110841570607 [2023]

Hydrogen isotopes & Tritium specific Analytical Techniques Development **Hydrogen isotopes & Tritium specific
Analytical Techniques Development
KIT – TLK selected as expert for Tritium Analytics
○ IO contract with KIT in place for Analytical Techniques
development (started 2022; min. 4 years)**

○ IO contract with KIT in place for Analytical Techniques development (started 2022; min. 4 years)

○ Development of analytical processes and calibration procedures adopted for the Tritium Plant systems derined analytical requirements
○ Demonstration / qualification of selecte
techniques
○ Development of analytical processes a
procedures adopted for the Tritium Plant
4 – Analytical Aspects "unresolved"

○ Identification of potential techniques for the different areas of Process Control, Accountancy and Radiation Protection

R. Michling 2023-05-25 27

○ Specification of potential techniques suitable for defined analytical requirements

○ Demonstration / qualification of selected analytical techniques

during KATRIN experiments at KIT-TLK 4827; doi:10.3390/s20174827)

Identified as analytical technique for fast online measurement of Q_2 mixtures for process control Identified as analytical technique for fast online measurement
of Q_2 mixtures for process control
 \circ suitable for absolute composition measurement
 \circ precise relative measurements of composition changes
 \circ tritiu

Example: Laser Raman

○ suitable for absolute composition measurement

 \circ fast measurement cycles for Q_2 product monitoring and process control feedback (1 min range)

○ enhancement of accuracy/sensitivity for trace hydrogen isotopologues (reliable, stable) \circ fast measurement cycles for Q₂ produc
process control feedback (1 min range)
 \circ enhancement of accuracy/sensitivity fo
isotopologues (reliable, stable)
 \circ component qualification for nuclear ope
safety aspect

○ precise relative measurements of composition changes

○ tritium compatible

Adaptation / upgrade required in view of IO requirements

Figure – micro-Laser Raman system

(F. Priester et al., Sensors 2022, 22,

3952; https://doi.org/10.3390/s22103952)

19952; https://doi.org/10.3390/s22103952) (F. Priester et al., Sensors 2022, 22, 3952; https://doi.org/10.3390/s22103952)

○ component qualification for nuclear operation (confinement, safety aspects)

Unresolved Analytical topics

Specification and upgrade of existing techniques or identification and development of new techniques

 Q_2 mixtures

- \circ detection of *impurities in Q*₂ gas
	- \bullet He in Q_2 (fuel ash) / O_2 in Q_2
- \circ discrimination of impurities in Q_2
- \circ detection of *trace* \mathbf{Q}_2 *in inert gas*
- \circ lower detection limit of Q_2 species

Q₂O mixtures

○ online measurement of tritiated water

- deuterium and tritium detection
- decision to process or to discharge

Q_2 O mixtures
 \circ online measurement of tritiated water
 \cdot deuterium and tritium detection
 \cdot decision to process or to discharge

Missing areas to be solved with the

4 – Analytical Aspects "unresolved"

(R.L. Webster et al.; Anal. Chem. 2020, 92, 7500−7507 https://dx.doi.org/10.1021/acs.analchem.9b05635)

https://www.chemlys.com/en/portfolio/rapid-syngas-biogasanalysis-by-micro-gc-fusion/ [2023]

Summary

R. Michling 2023-05-25 30

- Storage and supply of fuel (DT)
- Purification of fuel exhaust gases
- Separation and recycle of fuel gas D & T

Summary

Main fuel cycle functions of Tritium Plant process systems

Main process systems in preliminary/final design stage rage and euppry of tast (= 1)
ification of fuel exhaust gases
paration and recycle of fuel gas D & T
process systems in preliminary/final design s
totypes to demonstrate performance requirer
rical requirements
composition baration of fuel exhibits gases
paration and recycle of fuel gas D & T
process systems in preliminary/final des
totypes to demonstrate performance ree
rical requirements
composition measurement
- for process control (fast,

○ Prototypes to demonstrate performance requirements

Analytical requirements

- \circ Q₂ composition measurement
	-
	-
	-
- baration and recycle of fuel gas D c
process systems in preliminary/finatotypes to demonstrate performand
tical requirements
composition measurement
- for process control (fast, relative)
- accountancy (slow, precise)
- s Main process systems in preliminary/final design stage
 \circ Prototypes to demonstrate performance requirements

Analytical requirements
 \circ Q₂ composition measurement

- for process control (fast, relative)

- accoun <p>○ Prototypes to demonstrate performance requirements</p>\n<p>Analytical requirements</p>\n<p>○ Q₂ composition measurement</p>\n\n− for process control (fast, relative)\n− accountancy (slow, precise)\n− safety (reliable)\n\n<p>○ Tritium and Q₂ Analytics - Development program initiated with the expertise of KIT - TLK</p>

Thank you!

Robert Michling, Group Leader Process, Tritium Plant Section 2023-05-25

