Towards an atomic tritium source for Project 8

Sebastian Böser 30 years TLK Symposium | Karlsruhe | May 24nd 2023

RîSMA

Project 8 —

2

Molecular tritium limitations

Molecular excitations in ³HeT daughter molecule

- blur tritium endpoint
 - fundamental limit to measurement of ν-mass

Need atomic tritium for **ultimate** experiment!

Molecular tritium limitations

Molecular excitations in ³HeT daughter molecule

- blur tritium endpoint
 - fundamental limit to measurement of ν-mass

Need atomic tritium for **ultimate** experiment!

e⁻

Molecular tritium limitations

Molecular excitations in ³HeT daughter molecule

blur tritium endpoint

ν

 \bigcirc

 fundamental limit to measurement of ν-mass

Need atomic tritium for **ultimate** experiment!

e⁻

Storage of atomic T

- recombination catalyzed by walls → difficult!
- H,D and T have unpaired e⁻
 - ► non-zero magnetic moment µ
 - tend to (anti-)align with B-field if change is adiabatic

Potential energy

- $\Box \Delta E = \cdot \vec{\mu} \cdot \vec{B}$
- → half of spin states seek field minimum

Magnetic storage of neutral atoms

Storage of atomic T

■ recombination catalyzed by walls → difficult!

Project 8 —

Neutral particle traps

ALPHA Collaboration: Nature Phys 7:558, 2011; arXiv 1104.4982

UCNtau Collaboration: Phys Rev C89, 052501, 2014; arXiv 1310.5759v3

General design

- high magnetic field at walls
- Iow magnetic fields in the center
 - near-field to far-field transition with opposing fields

Atom trapping

Studying loffe-Pritchard trap

- plausible field step
 - ► ΔB=2 T
- Iimit thermal loss fraction
 - $\bullet \ \mathbf{\epsilon}_{\text{loss}} = 10^{.10}$
- maximum allowed temperature
 - ► T_{max} = **30 mK**

Challenges

- cooling to sub-Kelvin level
- keep high T/T₂ purity
 - ▶ molecular T₂ not trapped!
- field uniformity in central region

Atomic trapping: trap challenges

Atomic trapping: trap challenges

Atomic trapping: trap challenges

Halbach arrays

Permanent magnet configuration

- alternate orientations
 - strong near field
 - weak far field
- circular flux configuration
 - ▶ one "*magnetic*" side
 - ▶ one "*non-magnetic*" side

Magnetic field lines are more intense on one side than on the other.

Halbach arrays

Permanent magnet configuration

- alternate orientations
 - strong near field
 - weak far field
- circular flux configuration
 - ▶ one "*magnetic*" side
 - ▶ one "*non-magnetic*" side

Halbach arrays

Permanent magnet configuration

- alternate orientations
 - strong near field
 - weak far field
- circular flux configuration
 - ▶ one "*magnetic*" side
 - ▶ one "non-magnetic" side

Flat Halbach array

- field falls exponentially with characteristic length $l = \frac{2d}{\pi}$
 - weak far field

Halbach arrays for Project 8

Project 8 — 9

IG|U

Halbach arrays for Project 8

TauSPECT

Field configuration

cylindrical configuration

$$\overrightarrow{B}_{\text{Halbach}} = \overrightarrow{B_{\rho}} + \overrightarrow{B_{\varphi}}$$

no cancellation with solenoid electron field

$$\overrightarrow{B}_{\text{solenoid}} = \overrightarrow{B}_z$$

TauSPECT

Field configuration

cylindrical configuration

$$\overrightarrow{B}_{\text{Halbach}} = \overrightarrow{B_{\rho}} + \overrightarrow{B_{\varphi}}$$

no cancellation with solenoid electron field

$$\overrightarrow{B}_{\text{solenoid}} = \overrightarrow{B}_z$$

Field configuration

cylindrical configuration

$$\overrightarrow{B}_{\text{Halbach}} = \overrightarrow{B_{\rho}} + \overrightarrow{B_{\varphi}}$$

• no cancellation with solenoid electron field $\overrightarrow{B}_{solenoid} = \overrightarrow{B}_{z}$

Choice of permanent magents

- rare earth give highest field strength
- phase transition in NdFeB
 - not suitable below 140K
- SmCo, PrFeB,...

Figure 4. Magnetic Field as a Function of Temperature for NdFeB and SmCo. [6]

Magneto-gravitational trap

Magnetic trapping

•
$$E_m = \mu_B B = 58 \,\mu \mathrm{eV/T}$$

Gravitational trapping

$$E_g = mgh = 0.3 \,\mu eV/m$$

Energy of cold atomic beam

$$\bullet E_k = k_B T = 64 \,\mu \mathrm{eV/K}$$

→ For 1mK cold beam, it takes 0.21 meters of gravity and 11 gauss of B-field to trap.

Spin-flip loading ?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
 But: stimulated emission
 - will lose trapped atoms

Spin-flip loading?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
 But: stimulated emission
 - will lose trapped atoms

Spin-flip loading ?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
- But: stimulated emission
 - will lose trapped atoms

Cornucopia* loading

- Blow cold atoms into trap

 accept loss through
 entrance hole
 required input flux
 - for 1cm hole @ 50mK
 - ► 5 · 10¹² atoms/sec

Spin-flip loading ?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
- But: stimulated emission
 - will lose trapped atoms

Cornucopia* loading

 Blow cold atoms into trap

 → accept loss through entrance hole

 required input flux for 1cm hole @ 50mK
 5.10¹² atoms/sec

Atomic T source

■ Injection ✓

Trapping

- Dissociation ???
- Cooling ???
- Injection
- Trapping
- Purification/Circulation (✓)

T₂ dissociation schemes

Microwave dissociation @ 151MHz

- well tested for hydrogen
- chemical reaction with glass
 - not feasible with tritium!

Laser dissociation

- dissociation energy 4.52eV
 - wavelength < 274nm</p>
- required laser power ~ kW!

Coulomb explosion

difficult to re-neutralize

Thermal Dissociator

Hot tungsten tube heated to 2500K

- radiatively or
- by electron bombardment
 - commercial devices available

K.G. Tschersich and V. von Bonin (1998)

JG|L

Cooling atomic hydrogen

Hydrogen recombination

- three-body gas interactions
 - small rate
- wall interactions
 - Iong sticking time
 - dominates recombination

Probability depends on

- temperature
- material
- hydrogen isotope

Superfluid He containment

does not work for tritium!

D. A. Knapp et al., AIP conference proceedings (1984) Wood and H. Wise, J. Chem. Phys. 66, 1049, (1962)

JGU

Cooling tritium atoms

Cooling tritium atoms

Cracker → purity vs. flow

RÎSMA

Accommodator (liquid nitrogen) Final nozzle

- design for few bounces
- freeze-out 30K
 - → periodic purging

Only atomic T guided magnetically (bend) quadrupole with skimmers

Only atomic T guided magnetically (bend) quadrupole with skimmers

Workmen putting the finishing touches on Zig-zsg turn, Mt Van Hoevenberg Olympic bobsled run

Only atomic T guided magnetically

(bend) quadrupole with skimmers

Tune acceptance for

- $T_{out} = \mathcal{O}(50 \text{mK})$
- **T**₂ contammination $< 10^{-5}$
 - efficiency $\varepsilon_{cold} \sim 25\%$ -100%

Only atomic T guided magnetically

(bend) quadrupole with skimmers

Tune acceptance for

- $T_{out} = \mathcal{O}(50 \text{mK})$
- **T**₂ contammination $< 10^{-5}$
 - efficiency $\varepsilon_{cold} \sim 25\%$ -100%

Evaporative cooling

Basic idea

- magnetic wall
 - loose *hot* atoms (high p_{\perp})
- high density
 - re-thermalization
- drop magnetic field along beam
 - continuous cooling

Evaporative cooling: the math

→ assumes equilibrium !

Evaporation efficiency η_{ev}

 $\mu B(z) = \eta_{\rm ev} k_B T(z)$

large η_{ev}

slow cooling, high efficiency

small η_{ev}

fast cooling, low efficiency

Number density

$$n \propto T^{1/\gamma}$$
 with $\gamma = \frac{2}{3} \left(\eta_{ev} + \frac{1}{2} - C \right)$

• optimal value (C = 2,
$$\eta_{ev}$$
 = 4.5)

$$\triangleright \gamma = 2 \quad \rightarrow \quad n \propto T^{\frac{1}{2}}$$

Evaporative cooling: the hard math

Boltzman transport equation

Evaporative cooling: the hard math

Boltzman transport equation

Boltzman transport equation

Evaporative cooling: sliding threshold

Original idea

îSMA

- decrease wall height with time
 - faster cooling (initially)

Evaporative cooling: sliding threshold

Original idea

îSMA

- decrease wall height with time
 - faster cooling (initially)

Initial atomic beam

- net forward momentum
 - need cooling and slowing

The wiggler

- several wiggles within mean free path
 - transfer longitudinal to perpendicular momentum
- re-thermalization
 - ▶ slows down beam

Initial atomic beam

- net forward momentum
 - need cooling and slowing

The wiggler

- several wiggles within mean free path
 - transfer longitudinal to perpendicular momentum
- re-thermalization
 - ▶ slows down beam

Initial atomic beam

- net forward momentum
 - need cooling and slowing

The wiggler

- several wiggles within mean free path
 - transfer longitudinal to perpendicular momentum
- re-thermalization
 - slows down beam

Evaporative wiggle-cooling (or cool wiggeling?)

1e-15

Simultaneous

- evaporative cooling
- wiggeling
- re-thermalization

distribution gets colder and slower

Evaporative wiggle-cooling (or cool wiggeling?)

1e-15

Simultaneous

- evaporative cooling
- wiggeling
- re-thermalization

distribution gets colder and slower

Atomic tritium experiment

ROJECT Excess Electrons Conceptual design Pinch Pinch thermal dissociation Atomic tritium \blacktriangleright T₂ \rightarrow T experiment with accomodation <u>Solenoid</u> anticipated sensitivity Solenoi ▶ Ø(K) with acceptable to m_β of 400 meV fiducial recombination Field Field 10 +evaporative wiggle cooling Background Background mK Ø(mK) and slowing down Tritium high atomic purity Atoms Magneto-gravitational trap Halbach array Hot atoms evaporate as confining field drops Cracker Accommodator Nozzle 2500 K 160 K 8 K blecular tritium recirculation and supply Magnetic Quadrupole Project 8 — 27 RîSMA Velocity Selector & Cooler

Atomic beam demonstration: next steps

Dissociation and accommodation

- surface physics critical
 - establish experimentally
- Evaporative wiggle cooling
 - magneto-thermodynamics
 - enter design phase

Trapping

- fix temperature and density
 - enter design phase

Overall approach

- start with H₂ and D₂
 - see talk by A. Lindman
- vet with T₂
 - see the future

Thank you!

Project 8 collaboration