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Plan for this talk

*

Brief introduction to spacetime & black holes

Gravitational waves (GWs)

Recent GV discoveries

An exciting future ahead



The nature of gravity

A. Einstein

Matter & energy curve space ...

250 us delay of radio signals for

roundtrip to Mars measured in 1976

... and warp time

time flows slower on Earth than at the GPS satellites at 20000km
dfter one day: |7 us difference,

affects positioning by 5km/day

gravity is a manifestation of spacetime curvature

objects move along straightest path in curved spacetime geometry



Extremes of curvature: black holes

crushed

curvature

black hole

* region of immense spacetime curvature

event horizon

* no surface

. : , _ barrier for information
* From far away: described entirely by its mass and spin



Gravitational waves (GWVs)

* Accelerating masses generate ripples in spacetime curvature: gravitational waves

* Enormous energy creates just tiny waves
* Interact very weakly with matter:

travel through the universe essentially uncontaminated by absorption, attenuation, dispersion



The effect of GWs
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Detecting GVWVs

the small effect is very difficult to measure

it is possible with laser interferometers




Worldwide network of interferometer detectors

Laser Interferometer Gravitational wave Observatories (USA)

- LIGO Hanford (WA

o —




A glimpse inside the detectors

Seismic isolation

\

Livingston mirror
(40 kg)

age credit: LIGO/ F. Raab



A glimpse inside the detectors

beam tubes: ultrahigh vacuum

Portable power supply for bakeout

age credit: LIGO/ F. Raab 9



Expected limitations due to various noise sources
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Noise power spectral density on a given day

https://www.gw-openscience.org/detector_status/day/20190903/

[1251504018-1251590418, state: Observing]
GEO-LIGO-Virgo gravitational-wave strain
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A long effort ...

Nobel prize: effects

of GW losses on
binary pulsar

1993

Einstein publishes
the theory of

General Relativity,
predicts GWs

1915-16

Constructi
of LIGO
begins

Controversies: are
GWs physical?
first bar detectors

1945

1915

1930 1960 1975

Initial
detectors

operating, no
detections

2002-10

Factor of 10
improvement
of the
detectors

on

2010-15
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... until the first detection |4 September 2015, 10:45 CET

Data output LIGO Hanford and Livingston

MAVAAY
Ml

[credit: Harry & LSC]




HI Sroan
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... until the first detection |4 September 2015, 10:45 CET

Data output LIGO Hanford and Livingston
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|4. September 2015, 10:45:45 CET
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Gravitational-wave signal from a black hole merger

36 solar masses

et 50,000km/s 0.05 seconds per orbit
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Interpreting GWV signals from binaries
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Interpreting GWV signals from binaries

LSC» —— Data (GWI50914)  =—— Model
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Interpreting GWV signals from binaries

FEIPYSOGOL
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Many more black hole mergers have been measured
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Probing fundamental properties of spacetime

Details of the waveforms encode a wealth of additional information, e.g.:

* How does spacetime behave in nonlinear, dynamical regimes!?

* Does Einstein’s theory still hold? Hints of a theory of quantum-gravity!?




Numerical relativity simulation of GW 150914

Solve the nonlinear field equations of General Relativity for
the dynamical spacetime of the binary black hole system

(~ | month on supercomputers)



Example: Tests of gravity

Consistency test: look for residuals in the data after subtracting the waveforms

Null hypothesis:
residuals are just
detector noise

Cumulztive fraction of events

predicted by General Relativity

Null hypathesis 7/
GWTC.3

Measuremnant .

> vid Measurement
P within it is cons

Uncertainty region: anything
sistent with the null hypothesis

rwlue

LIGO-Virgo-KAGRA collaboration: Tests of General Relativity with GWTC-3

arXiv: 2112.06861
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The fundamental nature of black holes

* Black holes:

* General Relativity: only warped spacetime, horizon, singularity

.

* String Theory: ‘fuzzballs’

* Many other possibilities

‘Fuzzball’



Example: tests of the remnant black hole

Deviations of the final objects from black holes

2.5 7 = GWTC-3
= GWTC-2
Z40-
T :
-é;;—j 1'5 i} \ \
= \ | Measurement
E L07 uncertainty
£
—_
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0.0 T i
—1.0 ~0.5 0.0 0.5 1.0

(Sf?Ql

Parameter characterizing deviations from a black hole

LIGO-Virgo-KAGRA collaboration: Tests of General Relativity with GWTC-3
arXiv: 2112.06861
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More fundamental physics with GWs from binary systems

* Dark matter, new particles around black holes? ...

* Gravitational condensates of new fields?

* Extra (scalar, vector) fields are ubiquitous in beyond-standard-model

physics, incl. dark matter, inflation

* over cosmic time, condensates generically form

* GWs travel enormous distances through the universe:

dark energy, cosmology

22



More fundamental physics with GWs from binary systems

* Probing new regimes of subatomic physics with neutron stars

» Gravity compresses matter to ~ several times nuclear density

» Large extrapolation from known physics

Building blocks of matter

Electrons

Protons &

neutrons
Quarks &

gluons

Lot Nucleus
Atom 100000 times
smaller

23



GW signatures of interior structure during inspiral

AVAVAVAVAVAVAVAVAVAVASATA

. Absorption Various tidal effects
deformations |

- R -
e e @

Small but cumulative imprints characteristic of the object’s interior structure



Aug. | 7,2017: binary neutron star merger GW 170817

SNR ~ 18.8

Distance: ~40 Mpc

Total mass: ~ 2.74 Msun

GWs measured from the inspiral:

signatures of tidal effects yielded

constraints on dense matter physics

Artistic visualizations, credit NASA

Collision was outside the detector’s sensitive band in GWVs,
but the aftermath was visible as spectacular EM counterparts

Wealth of science with combined multi-messenger information
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Finally in 2020: neutron-star — black hole discoveries

GW200105:

8.9 12 M and 1.9795 M,

—1.5 —0.2

GW2001 15:

5.7+1'8 MQ and 1.5+O'7 MQ

=2.1 —0.3

LVK arXiv:2106.15163

Artist’s impression by C. Knox

The lighter object (most likely a neutron star) was probably ‘swallowed whole’
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The next years

Detectors currently being improved in sensitivity: next science run to start end of May 2023

Visible volume of the universe (benchmark binary)

CzronaBorzalsy

- Greater number, , Sk Jﬁk
diversity of events

Advanced LIGO 2015:

- Higher precision f|rst observmg run

studies design goal (2023)

~ 1 million galaxies

! =

II[I"!IJIJ e

initial LIGO 2010
~2500 galaxies
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Chirp Home  Latest  All Alerts About  Contact Network Status: [ CI) (5 £2 C3)

,http,s://chir_p.sr.bham.ac.uk/

Chirp - Keep track of the latest gravitational
wave alerts

Cravitationalwaves are ripples in space-time. The two LIGO detectors, Hanf and along with \ have a proven track record
of successful observations and are now issuing public alerts of possible gravitational waves events via the ates (GCN

system.

Chrrp isa web-app that listens to the GCN system and displays the information in a friendly format, with links to . vitat
2) pages for more detailed information. For more information about this app check out our about

fiat vent Database

—

LIGO's O3 Observing run has been suspended due to the COVID-19 pandemic. For more infornation, see the

Latest Alert ‘ | Att-Alerts l

Also available on mobile

. | | . GETITON #  Download on the |
4 . Google Play . App Store
’ & MME\



Ongoing efforts for next decade’s detectors

Plans for next-generation detectors (2030s), Europe:

Einstein Telescope

|0 times better sensitivity

stellar-mass black hole mergers in nearly the entire universe

Many other sources

Hundreds of thousands detections per year

Einstein Telescope
pathfinder at Maastricht

28



The space-based detector LISA

LISA: Laser Interferometer Space Antennae

e ESA-led mission, NASA involvement
 Scheduled for launch mid-2030s

*  Pathfinder was exceedingly successful (2017)

Access to different classes of sources,

new discovery space. For example:

Extreme mass ratio inspirals

Merging supermassive black holes (> millions Msun)
through cosmic time

Signal-to-noise ratio as high as ~5000 Orbit of inspiraling object
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The GW spectrum: over 20 decades in frequency

Sources

Relics from big bang, inflation, early universe, phase transitions, cosmic strings

wave period ~ age of the universe

BN

[Hz]

10-16

CMB polarization

Credit: BICEP2

compact objects rotating
captured by massive neutron stars,
black holes supernovae
years hours sec ms
|10-8 | 0-4 I |02
pulsar timing space-based terrestrial

¢ CreditNRAO A %
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Conclusion and outlook

B Gravitational waves: a new tool for science
B Probe dark sectors of the universe

B Unprecedented insights (gravity, black holes, dense matter, and much more)
0 Detectors will continue to improve in sensitivity, new instruments underway

B Exciting prospects for the future — however, much work remains to be done to

fully realize the enormous scientific potential




