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Problems in CMS experiment invite for “predictive”
machine learning

CMS experiment:

« Complex heterogeneous
detector, 100M channels
and100.000s nuisance
parameters

* Very Good generator
model (our simulation)
already existing

 Billions of examples

Astrophysics?

* Likely generative
machine learning more
Important than in CM;




Infer interesting parameters from data in CMS

Interesting df Experimental
parameters P data features

Nuisance
parameters

» |deally we would have the pdf for likelihoods
« We can not write the pdf down analytically
for our complex experiment (CMS)



Supervised deep learning to estimate parameters

a D
Interesting df Experimental
parameters P data features

.
[Nuisance MC Simulated

~
parameters samples pdf 7 data features
)
DNN

Learn classification
and regression

* Practically we can make MC simulation
 We that we can try a ML to estimate
Interesting parameters



Deep learning: bigger data is better data

optimal
_______________ o optimal
=
E headroom
S . Large NN
3 \_—___--- medium NN
£ // other ML

(labeled) data

* High dimensional inputs with big dataset and a large Deep Neural
Networks brought breakthroughs

* We have huge numbers of simulated samples with truth information &

* [tis very hard to estimate the headroom left &



Neural network glossary

Convolutional neural network Recurrent neural network

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+Rel +Rell Connected  Connected

CEP b ® ® - ®

_______ ' A T
ER @y, AP - (A l—i{a]
. %%Mn (0.94)

....... Ed bbb

Often used in natural languages or time

Initially made for images: Series:

* Discrete pixels (2D) * Flexible length sequence as input,
* Translation invariant (constant resolution) output always the size

* Local features need to be important * Long-short term memory RNN

.« ... (LSTM) avoids e.g. zero impact of

early elements in sequence
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Collecting particles from one hard scatter particle

time

e hard scatterin
— Ne. &
- 1
e partonic decays, e.g.
t— bW

— e parton shower
< | evolution
e colo glets

AN

Hadrons are
clustered
together to
make jets

[N\

e colourless clusters

-
N e cluster fission

/

* We are interested in the properties particle Id) of the “black”; but in the
detector we see the loose ends on the right.

* We use a clustering algorithm (anti-k;) to collect particle candidates and
than secondary vertices that might belong to one particle from the hard
scatter.



let tagging

Task to find the particle ID of a jet, e.g. b-quark

b jet

b hadror \ Key features:

“““ e * Long lifetime of heavy flavor
P <ccondary quarks
w o * Displaced tracks, ...
N e Usage of ML standard for this
problem

Revisited machine learning part from scratch



Changed to multi-class classification

let flavor tagging is intrinsically a multi-class classification problem

4 exclusive flavor categories:

* Exactly one b hadron in the jet

* Exactly one ¢ hadron, with no b-hadron in the jet
 Two or more b hadrons in jet

* Light quark/gluon jets (udsg)

Generic jet tagging has even more classes: light quark, gluons, hadronic t,
pile up

— Using many classes is important for a robust taggers. In real
data the tagger will see all possible classes
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Changes of training strategy

More diverse samples
> QCD and tt
Bigger samples
»> 50M jets!
Use complete standard CSV b-tag “Tag info” (from ~30->60)
Dense Deep Neural Network (Dense)

(5= _13 TeV, 2016
- CMS Slmulatlon Prellmmafy e

“ttevents '
| AK4jets (p >30 GeV)

-_csvvz < phties Pt
- | —DeepcsV|
o —oMvAv2 |

—_

3
s

misid. probability

107 e K £ e ;
DPS-, s .

. 2.’717?‘.05” - 5;‘:: — * Old tagger with new pixel detector
o e e o O7bjgfeff|%3ancy1 in Simulation

Similar impact as the new inner pixel



Application of new tagger in data

36 fb', \'s =13 TeV, 2016
B N B R R AU BN BN IR
CcCMS CKin" | Tageount hh->bbbb and MET
Preliminary ™nP - lterativeFit
h
CSVv2T — )
X - e
CcSvv2M 7‘:
CSVvaL —= : SR a
DeepCSVT — h N
ee '!’_: N .
PeepesvM «  Up to 50% more signal with
DeepCsVL - 15% more bkg.
\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘ . H 1 ~0
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 Gained 150 GeV in m(Xl)

Data/Simulation SFb

This new flavor tagger officially recommended since 2017
in CMS!
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b-jet misid. probability

ROC for c vs b an light

F_13 TeV 2016 {s=13 TeV, 2016
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c-jet efficiency c-jet efficiency

DeepCSV best ¢ tag performance

13



Deeplet: jet tagging by

physics obj

ect based deep learning
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CMS is a complex detector

240 < pT/GeV <260 GeV, 65 < mass/GeV <95

Pythia 8, W'—> WZ, {s =13 TeV S -
= 10 %' s il
S 109, & i
< 10 2 - , I T
E g e | l
0.5 s ) I I
£ 10" N 1 1 1l
< ., N L
) 10 Stlfeon ~TEE I Il M
T 0 107 Tracker I
n N
c N it
E 10 Electromagnetic I
= 10 Calorimeter !
-0.5 .
10 Calorimeter Superconducting
107 Solenoid Iron return yoke interspersed
-1 10°® witth muen chambers
10° .
-0.5 0 0.5 1 = Muon —— Electron —— Charged hadron (e.g. pion)
[Translated] Pseudorapidity (n) -==-Neutral hadron (e.g. neutron) ----. Photon

* Convolutional networks propose for jet images and shown to work for some
problems

* In general the CMS detector is more complex, e.g. not translational
invariant

CMS not “image” like, 2D CNN less easy to use .



What is a charged particle in the detector?

Charged particles flow candidates

Particle flow candidates
combine the information of all

subdetector

pr, M, ¢, and and particle ID
Estimated of probability to be
from the primary vertex
Provides links to rawer objects

like tracks

Via particle tracks access to
“BTV” features and others
Maybe a DeepParticle
candidate would be interesting

feature
trackEtaRel
trackPtRel
trackPPar
trackDeltaR

trackPPParRatio

trackSip2d Val
trackSip2dSig
trackSip3dVal
trackSip3dSig

trackJetDistVal |
trackJetDistSig |

pr(cPF)/pr(})
AR, (cPF,SV)
fromPV
VTXass
wp(cPF)

.].:

Npixel hits

| offset

-10

lower bound upper bound | comment

-5 15 BTV
. 4 BTV
-10° 10° BTV
-5 5 BTV
100 ' A BTV
- 70 BTV
4.10¢ BTV
A 10° BTV
- 4.10¢ BTV
-20 1 BTV
-1 10° | BTV
-1 0
-5 0
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More features of particle jets

Neutral particles candidates

feature | offset | lower bound  upper bound 4
e : ! global features
‘ME"": nPF,5V) -5 -5 0 feature || comment
1sCG;amma - - ) |
hadFrac - - - "', f;: :
AR(nPF) 0.6 0.6 0 )
l'l';:‘:v('})Fil - - l\', PF
‘\-IH
N5y
. Npy
Secondary vertices trackSam]etEiRatio BTV
trackSum]etDeltaR BTV
feature | offset | lower bound | upper bound \’ertexCatcg()r_\' BTV
1 SV | ~le & J " r
A (:’S £. ; o 5 = trac Lb\pod\j alAbov djharm BT\'
msv) trackSip2dSigAboveCharm BTV
N_‘;_"‘\;"ijl S trackSip3dValAboveCharm BTV
2 (SV) o - —— trackSip3dSigAboveCharm || BTV
1y (SV) - - = jetNSelected Tracks BTV
Sxp(SV) = 2 SO jetNTracksEtaRel BTV

(8

/)

w

/)
<<
N

N

cosg(SV)
E,.;(SV)

Strategy:

* Add quite extended information of jets
* Build a DNN that can deal with many and potentially low information features
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Physics object based NN architecture

Example: charged particle candidates

* Four 1x1 1D CNN layers reduces 18 to 8 features (feature engineering)

18

part=°;, CNN;,

RNN,,

part®,, CNN,, RNN,, e

* Avrecurrent NN (LSTM) represents the sequence of charged particles
that is sorted by impact parameter significance
* A constant length vector is than given to the next layers
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Particle and vertex based DNN: Deeplet

~700 400 250
—> —> —>
| |_,” :

c;harg. pért.

>
D
4

-}
®

global

FC

~ 700 inputs and 250.000 model parameters

* Particle and vertex based DNN has factor 10 less free parameters than a

generic Dense DNN would have
100M jets used for training, overtraining is not an issue
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misid. probability
o

1072

1072

Physics object based DNN performs best

Impact of DNN architecture
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b-jet efficiency
Blue: generic DNN (650 inputs)

Red: Physics inspired DNN (650 inputs)



misid. probability

-
o

- — Deepcsv ‘,4' ............... s .‘...'..‘ ............................................. ]

10'3 O TR T DRIt e e e T T e e e ]

DNN reveals true CMS potential

vs 13 TeV, Phase1

-
L

QCD events
. AK4jets (600 GeV < P, < 1000 GeV)

.| — DeepFlavour |- ...

........................................................................................................

...................................................................................................................................................

..................................................................................................................................................

0 0.1 02 03 0.4 05 06 0.7 08 09 1
b-jet efficiency

Very significant gain at high p;

With Deelet network can reproduce Deep(SV if for same inputs

Increase input step by step:

*  Not applying track selection (lost valuable information in past)
*  More features help, e.g. number of Pixel hits

Past human features track selection procedure a bottleneck of performance
DNN allows more automated evaluation of which information is needed



Simplified p; evolution of b-tagging

SV sensor pixel hits
tracks
——f= = e

mm ~ Ccm

few cm

* \Vertexing and tracking increasingly difficult at high p;

* Tracks and e.g. number of pixel hits or even pixel images become more
interesting

* Track selection at high p; was suboptimal in CMS
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Quark gluon separation

Gluon, Normallzed pr

| 1612.01551
Gluon radiate more:

* Typically wider spread and softer
particles

Translated Azimuthal Angle ¢

Both, quark and gluon have are

prompt, i.e. displaced particles and

vertices are not relevant

* Image approach proposed in
1612.01551

Translated Peaudorapidity 4

Quark, Normalized pr

Translatad Azimuthal Angle ¢

Translatad Peaudorapidity 4 2 3



Quark gluon separation

Investigate a few custom DNN g/g tagging:

Recurrent for q/g:
Input features, p; descending: RNN(LSTM)

_ Dense
pw as in 1407.6013

up to 25 charged  p.rel An, Ad, py — 100 —

up to 25 neutrals  p.rel Ay, A9, py — 100 — 200, 5x100

gIobaI P M, Nch’ Nneu
2D convolutional, four channels (CNN as in 1612.01551):

ch convolutional layer dense layer
3 p_l_rel

Nch

neu

zp_l_rel
N

—_— quark jet

o gluon jet

neu

gIObaI pT, n: Nch, Nn 24



Misid. probability

Comparisons of DNNs

* We filter on generatorlevel only light quarks and gluons that did
NOT split to heavy flavor.

Vs=13 TeV \E=13Tev
\\\;\\\\ T T LB

- QCD events, p_. = 30-50 GeV : : 3 L
0.8 jetp: 30 L A e S B e A

0.7F
0.6
0.5
0.4
0.3
0.2

o
co

— DeepJet — DeepJet

Misid. probability

---- recurrent b b fressinessnens frossenessnens ; s gfond ---- recurrent e o o oo i

-------- convolutlonal g  convolutional |

H;HH;HH%HH%HH;

g
"U
wn
)
<
—
=
1=}
. DN
]

o © o9 0o 9 9o oo
'_;l\)OJ-lkU'I(D\ImGD

0.1

TTTT HH)HH)\\H?HH)HH)HH)
_._:HH HH;HH;\\Hi\H\;HH;HH;HH‘H\

_l_AHHlHH*HH*HH*HH*HH*HH*HH*HH

[TTTT HH;

o
o
-

denadhe 111 \I I L1 1 1 L1 1 1 I L1 1 1 L1 1 1 g L1 1 L L1 11 I I ! I - L1
0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 02 03 04 05 06 07 08 09
Light quark efficiency Light quark efficiency

o

—> Generic Deeplet and custom g/g DNN gave very similar results!
—> Data is multi-class, without heavy flavor removed Deeplet was clearly best
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* New condition (PU or new geometry) require retraining of the

network

Pretraining

* Use “similar” training sample with huge statistics to “pre-train”
* Increases effectively your data-sets

100M 2017 50M 2016
simulation simulation
v v
DNN > DNN

Used 2017 DNN as start or fixed some inner layers for 2016

Deeplet
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Fat jets

Top Quark Decay

=y

at rest fat jet

Key features of tops:

o M(W), M(t), W polarization

* 3 "prong”

* b-subjet and 50% with c-subjet

Top tagging is a combined problem of flavor tagging and substructure,
masses with pileup, ...

Good place for Deeplet approach starting from physics

objects .



Fat jet vs. slim jet tagging

1) More particles Dense
2) More to learn: elofofof..
* Havor tagging \ -
* quark vs. gluon ® \\
* Mass of subjet combinations
* Al mixed if sub-jet merged
The slim jet Deeplet method slow for fat
jets if RNN output and more particles are
increased | L] @

— Keep concept of particles and vertices
— Convolutional layer with kernel 3 to allow for long range correlation

with increasing depth replaces slower recurrent network
— Many more convolutional layers



Residual deep neural networks

* Adding more layers can degrade the result

* Later layers have to learn to not change x (identity) and add a correction
(AX)

* RESNETs only learn adding a residual Ax, not identity

60
50

40

error (%)

30

plain-18
—plain-34

Ny my

ResNet-18 WS A,

—ResNet-34 34-layer
L L L L 20 T L L L I

0 10 20 30 40 50 0 10 20 30 40 50

iter. (1ed) iter. (le4)

20

RESNETs useful for to make deep convolutional networks
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features
)

features

features

Deeplet for fat jets

Inclusive particles

< >
particles, ordered by pr

flier Tt ===S10 o SNET CNN

(14 layers)

harqged particles (Tracks)

I
£

]

tracks ordered by SIP2D

Secondary Vertices
fior g ENRi===1t

SVs ordered by SIPZD

RESNET CNN

WEREVEIRS)

1

Fully
connected

(1 layer,
512 units,
relu-
activation,
dropout
=0.2)

Kinematic: Only 3 vectors of particles = substructure , ...
Full: all inputs = flavor tagging, substructure, ...

Output

top

Higgs
QCD
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BDT reference tagger

* BDT (full) using high-level features
* Based on the top/W taggers used in SUS-16-049
* inputs: jet kinematics, Nsubjettiness ratios, soft drop mass, subjet
mass, subjet Q/G discriminator, and CSV b tag
* added variables used by the boosted double-b tagger [BTV-15-002]

* trained with the same samples as Deeplet

* BDT (w/o b-tag info):
* allinput variables, except for subjet CSV b tag

Very competitive tagger to compare with Deeplet



* Deeplet "kinematics” similar to

Comparing fat Deeplet vs. BDT

BDT without b tag

With full information for BDT and

Deeplet perform much better
(factor 3-4 @ 1% BKG)

—
<
- —

QCD multijet efficiency
o

1073

107

CMS DP-2017/049

(13 TeV)

U T |

NEW

oMs
| Simulation Preliminary
1000 < p_< 1400 GeV, n| < 1.5

[ -+-BDT (w/o b-tag)

- =+=BDT (Full)

| DNN (Particle kinematics)
- —DNN (Particle ful) .

r !
;
! in L ‘ L L | | L | L ‘ | L

z

F Top vs QCD multijet ey

0o 02 0.4 06 08

1

Top efficiency

* Big gain not in sub-structure, but combining structure, PU, and flavor
* Previous DNN proposals focused only on structure (image)
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Independence of classifier of certain features

CMS \s=7TeV,L=51fb'\s=8TeV,L=5.31"

> x
Q >

O 8 Unweighted ]

o) 0

<1500 = .

2 g Simple bump-hunt:

o) - . . .

&,  Fit a function to “side-band”
©

£ to estimate background

o

2 * Check for bump

)

& 00 420 130 140 150

m,, (GeV)

* Used a classifier threshold to increase signal fraction in sample, but want

to avoid artificial bump in background
* Many features depend on mass (X), i.e. classifier likely as well even without

adding the mass
* Enforce independence of classifier on mass (X)
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arXiv:1611.01046

Adversarial training

Background discriminator

Classifier f Adversary r

x N\ | (£ 00); )
f(X;65) Y2 (f(X;6¢):6,)
— A P(yisvzes---)
J
/4

A

o, (Z|f(X;65))

o5 Lr(By) 8, c.(6;,6,) RegressZfrom f

>

0,08, = argming, maxg, L(07) — L,(6¢,0,)

Intuition: enforce that you cannot infer the “mass” from the discriminator
output
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NN Output

arXiv:1703.03507
Test of method on search with jet mass

1 B10g 849

- —— Traditional NN c Suscessive cuts on NN c Suctessive cuts or Adv. NN
0% +— Adv. Trained NN 2 rr“' - 2 rr\‘l -
0.8 ' > 10k ML [P
07 W g f g OFIN T

Wi ‘.. % +' o.. E 9 E ]C‘
0.6 /’ s & a
0.5( Py 4 3.\*’ }.M 4 I w 1o

C | .

- Y 0~\°T' o
0.4f R .M“#' * H ‘. ' y
0.3} Wi +
0.2} s \o

F . b, 4
01 Signal at 100 GeV ! . L o

00 — ’50 ‘ 1(130 1‘50‘ — 200 — ‘250 100 _ 200 00 0 100 . a0 an

Jet Invariant Mass [GeV) Jet Invariant Mass [GeV]

Jet Invariant Mass [GeV]

« Dependence of NN output on mass significantly reduced
« Mass shape less effected by cuts on discriminator

« Tested also for DeepdJet top tagger!
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Summary: Deeplet in CMS

Deep learned jet tagger for different cones sizes
Custom DNN architectures and big datasets used
Best performance:

* Slim jets b, ¢, uds, g

* Fatjets: top, W, Z, H (heavy flavor), QCD tagging
Fat jet tagging version with mass independence
existing
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Use data only?
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Learning by label proportion (semi supervised)

https://papers.nips.cc/paper/5453-almost-no-label-no-cry.pdf
“Small prints apply”, e.g. some constraints on loss functions, ...

Mean pred. prob.
Loss function

\

. N fl(wi)
Jweak = argrrllrlf,:};;,;_):O,]]f Z N —y
i=1

/

Known prob. to be of a class

In words: DNN output mean = label proportion

If you have several sets with know label proportions, this is enough for
learning.
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Just using sets with different label proportions

https://arxiv.org/pdf/1702.00414 .pdf

Indeed, it is sufficient to have different, but unknown label proportions

.

1 :
( Z° gluon-gluon scaltering

many quark jets many gluon jets

/O+iets: Dijet:

T © O ©
o

Need more than ONE data set
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Quark gluon data only example

Test in simulation with known
labels and a simple neural
network:

—> Weakly and fully supervised
lead to same performance

Very interesting approach with a few caveats:

True Positive Rate

Arxiv:1702.00414 —

—— Weakly supervised NN, AUC=0.93_ |
—— Fully supervised NN, AUC=0.93
- - - Feature 1, auc=0.77
- - - Feature 2, auc=0.70
- - - Feature 3, auc=0.78

Feature 4, auc=0.78

- -~ Feature 5, auc=0.71
| | |

co
—
—_
=

0.4 0.6 0.8
False Positive Rate

* Limited statistics in data in tails = tricky for deep learning

 Assumes that quark gluon is the ONLY difference, e.g. color
reconnections are different and many classes present

* You cannot make a ROC curve, i.e. do not know the performance
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Use data and MC?



Domain adaptation
Source domain (MC) Target domain (real data)
Good samples with

labels for training @ digital LR camera
classifier

User samples to
apply the training,
no labels available

amazon.com consum ges

Much literature; mainly aimed to have good performance of classifier in target
domain. ariv:1702.05464v1
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Deep learning at LHC

35

fe—— today

Z g
e 30 jy
NIPS reached 2017 T AN
plateau due limited % 20 7 st
. Q / _
tickets o 15 p 4 review!
© yd
o 10 ’,ﬁu
gi 5 7j_,¢e§¢£§2"
% ,56’5";;5-;#;’
0
9/2/14 9/2/15 9/2/16 9/2/17

Deep learning community continues grow at
LHC and elsewhere

NN toolkits improved as well
Without higher energy collisions we need better
data analysis to keep progressing in science
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Application in physics analysis

SUS-16-044:

Search for events with two h->bb and MET

CMS Preliminary
L

35.9 fo
ol

(13 TeV)
Smh

s

pp - 7

My ~m

7 = My, my = 1 GeV

L L e

L

» hG

h 3 — NLO4NLL = o, =
L’ :é.- — Observed 3
A Wl 2b=Np1=2, Nom=2 T Expected = 20 ¥
L 0 x

3b = Nb,T = 2, Nb,M = 3, Nb,L = 3 B’ 5

P, W emmmT ¢ li "G 39090909 9« 3

! . 4b=Np7=22, Nom=3, NpL =4 :

hN 0A,.Al....1....lx...l....l....l...IA,A.‘
h 200 300 400 500 600 700 800 900 1000

Higgsino mass m; [GeV]

CSVv2 TChiHH | TChiHH DeepCSV TChiHH | TChiHH

L =359 fb~! All SM bkg. (225,1) (700,1) L =359 b ! All SM bkg. (225,1) (700,1)

> 2b — 3761.5 33.7 > 2b 4625.6 39.7
> 3b - 1999.1 19.0 > 3b — 2548.7 24.1
4b — 860.0 9.3 4b — 1149.1 12.7
Baseline, > 2b 2600.1+101.0 75.6 7.7 Baseline, > 2b 3650.54+90.2 95.1 9.9
Baseline, > 3b 276.9+5.5 49.6 54 Baseline, > 3b 385.249.0 68.6 7.4
Baseline, 4b 72.24+4.1 30.9 3.6 Baseline, 4b 94.3+5.3 43.4 5.1
Baseline, p2ss > 300, > 2b 104.242.4 2.8 6.0 Baseline, p%iss > 300, > 2b 144.8+2.8 4.0 7.7

Baseline, ps* > 300, > 3b 1 Baseline, piiss > 300, > 3b 1 S

Baseline, pi2is > 300, 4b 4.0+0.4 ‘ 1.7 ’ ‘ 2.8 D Baseline, piss > 300, 4b 4.6+0.4 ‘ 2.5 ) 4.0

Significant Improvement: e.g. up to ~50% more signal for 15% more bkg
— Significantly improved lower mass limit (150 GeV in Higgsino mass)
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