
DeepJet: Jet classification with the 
CMS experiment

Markus Stoye
Imperial College London, DSI

“Big data science in astroparticle physics”, HAP workshop, Aachen, Germany, 20th Feb. 2018



1

Content

• Introduction
• Revisited machine learning for flavor 

tagging
• Deep learning for jet tagging 



2

Problems in CMS experiment invite for “predictive” 
machine learning

CMS experiment:
• Complex heterogeneous 

detector, 100M channels 
and100.000s nuisance 
parameters

• Very Good generator 
model (our simulation) 
already existing

• Billions of examples

Astrophysics?
• Likely generative 

machine learning more 
important than in CMS



Interesting 
parameters

• Ideally we would have the pdf for likelihoods
• We can not write the pdf down analytically 

for our complex experiment (CMS)

pdf Experimental 
data features

Nuisance
parameters

Infer interesting parameters from data in CMS



Interesting 
parameters

MC
samples pdf

DNN
Learn classification

and regression

Experimental 
data featurespdf

Simulated 
data features

• Practically we can make MC simulation
• We that we can try a ML to estimate 

interesting parameters

Nuisance
parameters

Supervised deep learning to estimate parameters
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(labeled) data

Large NN

other ML
medium NN

• High dimensional inputs with big dataset and a large Deep Neural 
Networks brought breakthroughs

• We have huge numbers of  simulated samples with truth information 😀
• It is very hard to estimate the headroom left 😕

headroom
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Deep learning: bigger data is better data



Initially made for images:
• Discrete pixels (2D)
• Translation invariant (constant resolution)
• Local features need to be important
• …

Convolutional neural network Recurrent neural network

Often used in natural languages or time 
series:
• Flexible length sequence as input, 

output always the size
• Long-short term memory RNN 

(LSTM) avoids e.g. zero impact of  
early elements in sequence

• …
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Neural network glossary
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Revisited machine learning for 
heavy flavor tagging in CMS
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Collecting particles from one hard scatter particle

• We are interested in the properties particle Id) of  the “black”; but in the 
detector we see the loose ends on the right.

• We use a clustering algorithm (anti-kT) to collect particle candidates and 
than secondary vertices that might belong to one particle from the hard 
scatter.

time



Task to find the particle ID of  a jet, e.g. b-quark

Key features:
• Long lifetime of  heavy flavor 

quarks
• Displaced tracks, …
• Usage of  ML standard for this 

problem
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Jet tagging

Revisited machine learning part from scratch



4 exclusive flavor categories:
• Exactly one b hadron in the jet
• Exactly one c hadron, with no b-hadron in the jet
• Two or more b hadrons in jet
• Light quark/gluon jets (udsg)

® Using many classes is important for a robust taggers. In real 
data the tagger will see all possible classes

Jet flavor tagging is intrinsically a multi-class classification problem
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Changed to multi-class classification

Generic jet tagging has even more classes: light quark, gluons, hadronic t, 
pile up
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Similar impact as the new inner pixel! 

• More diverse samples
Ø QCD and tt

• Bigger samples
Ø 50M jets!

• Use complete standard CSV b-tag “Tag info” (from ~30→60)
• Dense Deep Neural Network (Dense)

Old tagger with new pixel detector 
in simulation

new
old

11

Changes of training strategy
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1. Use the 4 jets with highest b-tag discriminant to construct 3 
possible H1H2 pairings

2. Select H1H2 pair minimizing mass difference:
3. Define ∆Rmax as the larger of the opening angle between the two 

b-quarks for H1 and H2

SUS-16-044: Analysis definitions

�m = |mH1 �mH2 |

Higgs reconstruction

Objects

2b ≡ Nb,T = 2, Nb,M = 2

3b ≡ Nb,T ≥ 2, Nb,M = 3, Nb,L = 3

4b ≡ Nb,T ≥ 2, Nb,M ≥ 3, Nb,L ≥ 4

b-tag categories

Search for Higgsinos in the context of GMSB in 
the HH+MET final state, where the Higgs bosons  
are reconstructed in their h→ bb decay.

Overview

• No veto leptons or tracks
• 4 or 5 jets, at least 2 tight b-tags
• pTmiss > 150 GeV
• ∆!1,2 > 0.5, ∆!3,4 > 0.3, where ∆!i ≡ ∆R(pTmiss, ith jet)
• ∆m < 40 GeV, ∆Rmax < 2.2 

Baseline event selection

P1

P2

χ̃0
1

χ̃0
1

h

G̃

G̃

h

Nominal search performed in 
Higgs boson mass window in 

the 3b and 4b categories 
defined based on DeepCSV

6 3 Object and variable definitions

to have pT > 10 GeV (pT > 20 GeV) and |h| < 2.5, and to satisfy identification criteria—98

corresponding the veto (medium) working point as defined by the EGAMMA POG—designed99

to minimize any misidentification of light-parton jets, photon conversions, and electrons from100

heavy flavor hadron decays as prompt electrons. Muons are reconstructed by associating tracks101

in the muon system with those found in the silicon tracker [13]. Veto (signal) muon candidates102

are required to satisfy pT > 10 GeV (pT > 20 GeV) and |h| < 2.4 and the medium working point103

as defined by the MUON POG.104

To preferentially select leptons that originate in the decay of W and Z bosons, leptons are re-105

quired to be isolated from other PF candidates. Isolation is quantified using an optimized ver-106

sion of the “mini-isolation” variable originally suggested in Ref. [14], in which the transverse107

energy of the particles within a cone in h-f space surrounding the lepton momentum vector108

is computed using a cone size that scales as 1/p`
T, where p`

T is the transverse momentum of109

the lepton. In this analysis, mini-isolation, Irel
mini = Imini/p`

T, is defined as the transverse energy110

Imini of particles in a cone of radius Rmini-iso around the lepton, divided by p`
T. The transverse111

energy Imini is computed as the scalar sum of the pT values of the charged hadrons from the PV,112

neutral hadrons, and photons. The last term is a correction that estimates the average amount113

of pileup energy near the leptons by taking the contribution from charged candidates not orig-114

inating from the primary vertex and multiplying by 1
2 to account for the average difference in115

neutral and charged contributions from pileup.116

The cone radius Rmini-iso varies with the p`
T according to

Rmini-iso =

8
>><

>>:

0.2, p`
T  50 GeV

10 GeV
p`

T
, p`

T 2 (50 GeV, 200 GeV)

0.05, p`
T � 200 GeV.

(1)

The 1/p`
T dependence is motivated by considering a two-body decay of a massive parent par-117

ticle with mass M and large pT, for which the angular separation of the daughter particles118

is roughly DRdaughters ⇡ 2M/pT. The pT-dependent cone size reduces the rate of accidental119

overlaps between the lepton and jets in high-multiplicity or highly Lorentz-boosted events,120

particularly overlaps between b jets and leptons originating from a boosted top quark. The121

cone remains large enough to contain b-hadron decay products for non-prompt leptons across122

a range of p`
T values. Muons (electrons) must satisfy Irel

mini < 0.2 (0.1). The combined efficiency123

for the signal electron reconstruction and isolation requirements is about 50% at a p`
T of 20 GeV,124

increasing to 65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined recon-125

struction and isolation efficiencies for signal muons are about 70% at a p`
T of 20 GeV, increasing126

to 80% at 50 GeV and reaching a plateau of 95% at 200 GeV.127

As already noted in Section 1, the dominant background in the analysis arises from tt single-128

lepton events in which the lepton is a t decaying hadronically or is a light lepton that is not129

Table 2: Summary of object selection requirements.

Object pT [GeV] |h| Other
Jets 30 2.4 Anti-kt R=0.4, cleaned from leptons
Veto electrons 10 2.5 Cut-based Veto ID, Imini < 0.1
Veto muons 10 2.4 Medium ID, Imini < 0.2
Lepton tracks 5 2.4 Itk < 0.2, mT(tk, pmiss

T ) < 100 GeV
Hadronic tracks 10 2.4 Itk < 0.1, mT(tk, pmiss

T ) < 100 GeV

• Up to 50% more signal with 
15% more bkg.

• Gained 150 GeV in m(c!")

hh->bbbb and MET

~

This new flavor tagger officially recommended since 2017 
in CMS!
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Application of new tagger in data



DeepCSV best c tag performance
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ROC for c vs b an light
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DeepJet: jet tagging by
physics object based deep learning



• Translation: Jet-images are translated such that the leading pT subjet is located at (η, φ) = (0, 0).
Note that translations in φ are effectively rotations around the detector z-axis, while translations in
η are Lorentz boosts along the z-axis. As such, translations in η can alter the mass of a jet-image if
the pixel energies are kept fixed. However, the transverse energy is invariant to such η translations,
and thus is used for the pixel intensities.

• Rotation: Jets are rotated such that the second leading pT subjet is aligned along the vertical axis of
the jet-image. If the jet has only one subjet, the first principle component of the energy distribution
in (η, φ) is rotated to align with the vertical axis of the jet-image.

• Parity Flip: After rotation, images are flipped over the vertical axis such that the right side of the
image has a higher energy than the left. This helps to standardize the location of additional radiation
in the jet-image.

After pre-processing, the leading subjet within the jet-image is located at the center of the image, and
the second subjet (if it exists) is aligned along the vertical axis of the image. In facial recognition
tasks, this is equivalent to aligning the eyes within an image of a face. With such a standardized
jet-image representation, the machine learning algorithms do not need to learn about the symmetries
in the jet-image, thus allowing the learning to focus more effectively on discrimination. The effect of
the pre-processing on a collection of W jets can be found in Figure 1.
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Figure 1. The average jet-image for W jets before (left) and after (right) pre-processing. The average is taken
over jet-images with 240 GeV/c < pT < 260 GeV/c and 65 GeV/c2 < m < 95 GeV/c2.

4 Deep learning architectures and training

Discrimination between W and quark/gluon jet-images is performed using deep neural networks
(DNN), which have been found to outperform competing algorithms in computer vision tasks sim-
ilar to jet tagging with jet-images. DNNs have been found to learn rich high-level representations
from raw (pixel-level) image data [5–7]. We make use of the power of such networks by training
them on jet-images, with the pixel level information as input. We focus our attention here on two

    
  

DOI: 10.1051/,127 1270000EPJ Web of Conferences epjconf/20160000  (2016)
201Connecting The Dots 6

9 9

3

• Convolutional networks propose for jet images and shown to work for some 
problems

• In general the CMS detector is more complex, e.g. not translational 
invariant

CMS not “image” like, 2D CNN less easy to use
15

CMS is a complex detector
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What is a charged particle in the detector?

Npixel hits

Charged particles flow candidates

• Particle flow candidates 
combine the information of  all 
subdetector

• pT, h, f, and and particle ID
• Estimated of  probability to be 

from the primary vertex
• Provides links to rawer objects 

like tracks
• Via particle tracks access to 

“BTV” features and others
• Maybe a DeepParticle 

candidate would be interesting
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More features of particle jets

global features
Neutral particles candidates

Secondary vertices

Strategy:
• Add quite extended information of  jets
• Build a DNN that can deal with many and potentially low information features



part25
ch CNNch RNNch

part0ch CNNch RNNch

18 8

… … …
150

• Four 1x1 1D CNN layers reduces 18 to 8 features (feature engineering)

• A recurrent NN (LSTM) represents the sequence of  charged particles 
that is sorted by impact parameter significance

• A constant length vector is than given to the next layers

18

Physics object based NN architecture
Example: charged particle candidates



CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNsvsec. vert. RNNsv

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNneneutr. part. RNNne

Classification
DNN

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNchcharg. part. RNNch

FC

global

Classification
DNN

~700 400 250
® ® ®

• Particle and vertex based DNN has factor 10 less free parameters than a 
generic Dense DNN would have

• 100M jets used for training, overtraining is not an issue

~ 700 inputs and 250.000 model parameters

19

Particle and vertex based DNN: DeepJet



DP-2017-013

Blue: generic DNN (650 inputs)
Green: CMS tagger (~65 human made inputs)
Red: Physics inspired DNN (650 inputs)

Physics object based DNN performs best
20

Impact of DNN architecture



DP-2017-013

• With DeeJet network can reproduce DeepCSV if  for same inputs
• Increase input step by step:

• Not applying track selection  (lost valuable information in past)
• More features help, e.g. number of  Pixel hits

~O(10)

50%

21

DNN reveals true CMS potential

Very significant gain at high pT

• Past human features track selection procedure a bottleneck of  performance
• DNN allows more automated evaluation of  which information is needed
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Simplified pT evolution of b-tagging

✶ ✶

SV
tracks

mm ~ cm

sensor

• Vertexing and tracking increasingly difficult at high pT
• Tracks and e.g. number of  pixel hits or even pixel images become more 

interesting
• Track selection at high pT was suboptimal in CMS

pixel hits

few cm



Gluon radiate more:
• Typically wider spread and softer 

particles

Both, quark and gluon have are 
prompt, i.e. displaced particles and 
vertices are not relevant
• Image approach proposed in 

1612.01551

1612.01551

23

Quark gluon separation



RNN(LSTM)

200, 5x100pT
rel, Dh, Df, pW

Input features, pT descending: Dense

100
pT, h, Nch, Nneu

Recurrent for q/g:
J
H
E
P
0
1
(
2
0
1
7
)
1
1
0

η φ

b
ea
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

︸ ︷︷ ︸
×3

Figure 2. An illustration of the deep convolutional neural network architecture. The first layer is
the input jet image, followed by three convolutional layers, a dense layer and an output layer.

Only moderate optimization of the network architecture and minimal hyperparameter-

tuning were performed in this study. This optimization included exploration of different

optimizers (Adam, Adadelta, RMSprop), filter sizes, number of filters, activation functions

(ReLU, tanh), and regularization (dropout, L2-regularization), though this exploration was

not exhaustive. Further systematic exploration of the space of architectures and hyperpa-

rameter values, such as with Bayesian optimization using Spearmint [51], might increase

the performance of the deep neural network.

3.3 Jet images in color

All implementations of the jet images machine learning approach that we know of take as

the input image a grid where the input layer contains the pre-processed energy or transverse

momentum in a particular angular region. This can be thought of as a grayscale image,

with only intensity in each pixel and all color information discarded. In computer vision

– 8 –

2D convolutional, four channels (CNN as in 1612.01551): 

pT
rel, Dh, Df, pWup to 25 charged 100

up to 25 neutrals

global

pT, h, Nch, Nnglobal

SpT
rel

Nch
SpT

rel

Nneu

ch

neu

pW as in 1407.6013

Investigate a few custom DNN q/g tagging: 

24

Quark gluon separation
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 600 and 800 GeV and using jets with a pT above 500 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 30 and 50 GeV and using jets with a pT above 30 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.
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DPS-2017-027DPS-2017-027

• We filter on generator level only light quarks and gluons that did 
NOT split to heavy flavor.

→ Generic DeepJet and custom q/g DNN gave very similar results!
→ Data is multi-class, without heavy flavor removed DeepJet was clearly best

25

Comparisons of DNNs
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Pretraining
• New condition (PU or new geometry) require retraining of  the 

network
• Use “similar” training sample with huge statistics to “pre-train”
• Increases effectively your data-sets

100M 2017
simulation

50M 2016
simulation

DNN DNN

Used 2017 DNN as start or fixed some inner layers for 2016 
DeepJet
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Fat jets

Key features of  tops:
• M(W), M(t), W polarization
• 3 “prong”
• b-subjet and 50% with c-subjet
Top tagging is a combined problem of  flavor tagging and substructure, 
masses with pileup, …

Good place for DeepJet approach starting from physics 
objects
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Fat jet vs. slim jet tagging

1) More particles
2) More to learn:

• Flavor tagging
• quark vs. gluon
• Mass of  subjet combinations
• All mixed if  sub-jet merged 

The slim jet DeepJet method slow for fat 
jets if  RNN output and more particles are 
increased

→ Keep concept of  particles and vertices
→ Convolutional layer with kernel 3 to allow for long range correlation 

with increasing depth replaces slower recurrent network
→ Many more convolutional layers

…
…

…

…

Dense

…

…
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Residual deep neural networkslayer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2


3⇥3, 64
3⇥3, 64

�
⇥2


3⇥3, 64
3⇥3, 64

�
⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

conv3 x 28⇥28


3⇥3, 128
3⇥3, 128

�
⇥2


3⇥3, 128
3⇥3, 128

�
⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥8

conv4 x 14⇥14


3⇥3, 256
3⇥3, 256

�
⇥2


3⇥3, 256
3⇥3, 256

�
⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥23

2

4
1⇥1, 256
3⇥3, 256

1⇥1, 1024

3

5⇥36

conv5 x 7⇥7


3⇥3, 512
3⇥3, 512

�
⇥2


3⇥3, 512
3⇥3, 512

�
⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512

1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer
3We have experimented with more training iterations (3⇥) and still ob-

served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.
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model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.
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Dx

x

x

x+Dx

• Adding more layers can degrade the result
• Later layers have to learn to not change x (identity) and add a correction 

(Dx)
• RESNETs only learn adding a residual Dx, not identity

RESNETs useful for to make deep convolutional networks
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DeepJet for fat jets
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filter

Kinematic: Only 3 vectors of  particles → substructure , …
Full: all inputs → flavor tagging, substructure, …
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BDT reference tagger 

• BDT (full) using high-level features
• Based on the top/W taggers used in SUS-16-049

• inputs: jet kinematics, Nsubjettiness ratios, soft drop mass, subjet 
mass, subjet Q/G discriminator, and CSV b tag

• added variables used by the boosted double-b tagger [BTV-15-002]
• trained with the same samples as DeepJet

• BDT (w/o b-tag info):
• all input variables, except for subjet CSV b tag 

Very competitive tagger to compare with DeepJet 
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Comparing fat DeepJet vs. BDT

• DeepJet ”kinematics” similar to 
BDT without b tag

• With full information for BDT and 
DeepJet perform much better 
(factor 3-4 @ 1% BKG)

• Big gain not in sub-structure, but combining structure, PU, and flavor 
• Previous DNN proposals focused only on structure (image)

CMS DP-2017/049

NEW
……
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Independence of  classifier of  certain features

Simple bump-hunt:
• Fit a function to “side-band” 

to estimate background
• Check for bump

• Used a classifier threshold to increase signal fraction in sample, but want 
to avoid artificial bump in background

• Many features depend on mass (X), i.e. classifier likely as well even without 
adding the mass

• Enforce independence of  classifier on mass (X)
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Adversarial training 

=mass

Background discriminator

Regress Z from f

Intuition: enforce that you cannot infer the “mass” from the discriminator 
output

arXiv:1611.01046 
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arXiv:1703.03507

Signal at 100 GeV

• Dependence of NN output on mass significantly reduced
• Mass shape less effected by cuts on discriminator
• Tested also for DeepJet top tagger!

Test of method on search with jet mass
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Summary: DeepJet in CMS

• Deep learned jet tagger for different cones sizes
• Custom DNN architectures and big datasets used
• Best performance:

• Slim jets b, c, uds, g
• Fat jets: top, W, Z, H (heavy flavor), QCD tagging

• Fat jet tagging version with mass independence 
existing
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Use data only?



38

Learning by label proportion (semi supervised)
https://papers.nips.cc/paper/5453-almost-no-label-no-cry.pdf

Loss function

Known prob. to be of a class

Mean pred. prob. 

“Small prints apply”, e.g. some constraints on loss functions, …

In words: DNN output mean = label proportion

If  you have several sets with know label proportions, this is enough for 
learning.
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Just using sets with different label proportions

Z0+jets:

many quark jets

Dijet:

many gluon jets

d

Z0

https://arxiv.org/pdf/1702.00414.pdf

Indeed, it is sufficient to have different, but unknown label proportions

Need more than ONE data set
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Quark gluon data only example

tion of quark initiated jets varies between 0.21 and 0.32. Figure 3 shows that, while the individual
observables perform di↵erently in the high or low gluon e�ciency (true positive rate) regimes, their
combination in a NN gives consistently better performance. The weakly supervised classifier matches
the performance of the fully supervised NN, despite only knowing sample proportions instead of indi-
vidual event labels. By construction the weakly supervised classifier is also robust against a realistic
amount of mis-modeling in the input variables. This feature is tested by building a pseudo-data sample
where the probability distributions of n and w are distorted in the training sample to emulate the
di↵erence in e�ciency measured in Ref. [6]. The study in Ref. [6] found that a classifier extracted from
simulation is more powerful than one extracted from the data. This is reflected in the results presented
in the right plot of Fig. 3. When a fully supervised classifier is trained on a sample generated with
the same distribution as the test sample (mimicking training and testing on simulation), it achieves a
better performance than when trained on the original sample and tested on the distorted pseudo-data
(mimicking training on simulation and testing on data). In contrast, the weakly supervised classifier
can be trained directly on the distorted pseudo-data sample (representing the data) so is insensitive to
the mismodeling of the input variables. This results in a 10% bias from the standard procedure that
is avoided by the weakly supervised classifier. Even larger di↵erences may be expected from this and
other classification tasks that utilize even more input features or are more mis-modeled. The weakly
supervised classifier is robust and outperforms the standard supervised learning trained on simulation.

Figure 4: ROC curves for instance classification using five individual features and then combined
using a fully supervised network and the weakly supervised classifier.

4 Conclusions

We have presented a new approach to classification with NN in cases where class proportions are
known but individual labels are not readily available. This weakly supervised classification has broad
applicability and has been demonstrated in one important discrimination task in high energy physics:
quark versus gluon jet tagging. In the quark/gluon and related contexts, weakly supervised classifi-
cation provides a robust and powerful approach because it can be directly trained on examples from
(unlabeled) data instead of (labeled, but unreliable) simulation. The examples presented so far have
used a small number of input features to illustrate the ideas, but there is no algorithmic limitation on

– 6 –

Arxiv:1702.00414

Test in simulation with known 
labels and a simple neural 
network:
→ Weakly and fully supervised 
lead to same performance

Very interesting approach with a few caveats:
• Limited statistics in data in tails → tricky for deep learning
• Assumes that quark gluon is the ONLY difference, e.g. color 

reconnections are different and many classes present
• You cannot make a ROC curve, i.e. do not know the performance
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Use data and MC?
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Domain adaptation

Good samples with 
labels for training a 
classifier

Source domain (MC) Target domain (real data)

User samples to 
apply the training, 
no labels available

Much literature; mainly aimed to have good performance of  classifier in target 
domain. arXiv:1702.05464v1 
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Deep learning at LHC 

NIPS reached 2017 
plateau due limited 
tickets

• Deep learning community continues grow at 
LHC and elsewhere

• NN toolkits improved as well
• Without higher energy collisions we need better 

data analysis to keep progressing in science
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CSVv2 TChiHH TChiHH

L = 35.9 fb�1 All SM bkg. (225,1) (700,1)

� 2b – 3761.5 33.7

� 3b – 1999.1 19.0

4b – 860.0 9.3

Baseline, � 2b 2600.1±101.0 75.6 7.7

Baseline, � 3b 276.9±5.5 49.6 5.4

Baseline, 4b 72.2±4.1 30.9 3.6

Baseline, pmiss
T > 300, � 2b 104.2±2.4 2.8 6.0

Baseline, pmiss
T > 300, � 3b 12.9±0.8 2.4 4.2

Baseline, pmiss
T > 300, 4b 4.0±0.4 1.7 2.8

DeepCSV TChiHH TChiHH

L = 35.9 fb�1 All SM bkg. (225,1) (700,1)

� 2b – 4625.6 39.7

� 3b – 2548.7 24.1

4b – 1149.1 12.7

Baseline, � 2b 3650.5±90.2 95.1 9.9

Baseline, � 3b 385.2±9.0 68.6 7.4

Baseline, 4b 94.3±5.3 43.4 5.1

Baseline, pmiss
T > 300, � 2b 144.8±2.8 4.0 7.7

Baseline, pmiss
T > 300, � 3b 16.3±0.8 3.2 5.7

Baseline, pmiss
T > 300, 4b 4.6±0.4 2.5 4.0

Comparison of CSVv2 and DeepCSV

Comparison of the total background and signal yields in simulation for selections based on CSVv2 (left) and DeepCSV (right) in the context 
of the SUS-16-044 analysis. Two benchmark TChiHH points with Higgsino masses of 225 GeV and 700 GeV, and Goldstino mass of 1 GeV 
are shown. The yields for the three b-tag categories are shown for three cases: prior to any selection, after the baseline, and in the high-
pT

miss region where the sensitivity to high mass Higgsinos is enhanced. The background is dominated by events with 2 true b quarks, while 
the signal has 4 b quarks. Compared to CSVv2, the high b-tagging efficiency of the DeepCSV algorithm extends the expected exclusion 
limit by approximately 150 GeV in the Higgsino mass, corresponding to a cross-section that is 3 times smaller. This gain in mass reach is 
aided by the increasingly more favorable kinematics of the signal at higher Higgsino masses.
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1. Use the 4 jets with highest b-tag discriminant to construct 3 
possible H1H2 pairings

2. Select H1H2 pair minimizing mass difference:
3. Define ∆Rmax as the larger of the opening angle between the two 

b-quarks for H1 and H2

SUS-16-044: Analysis definitions

�m = |mH1 �mH2 |

Higgs reconstruction

Objects

2b ≡ Nb,T = 2, Nb,M = 2

3b ≡ Nb,T ≥ 2, Nb,M = 3, Nb,L = 3

4b ≡ Nb,T ≥ 2, Nb,M ≥ 3, Nb,L ≥ 4

b-tag categories

Search for Higgsinos in the context of GMSB in 
the HH+MET final state, where the Higgs bosons  
are reconstructed in their h→ bb decay.

Overview

• No veto leptons or tracks
• 4 or 5 jets, at least 2 tight b-tags
• pTmiss > 150 GeV
• ∆!1,2 > 0.5, ∆!3,4 > 0.3, where ∆!i ≡ ∆R(pTmiss, ith jet)
• ∆m < 40 GeV, ∆Rmax < 2.2 

Baseline event selection
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χ̃0
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χ̃0
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h
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G̃

h

Nominal search performed in 
Higgs boson mass window in 

the 3b and 4b categories 
defined based on DeepCSV

6 3 Object and variable definitions

to have pT > 10 GeV (pT > 20 GeV) and |h| < 2.5, and to satisfy identification criteria—98

corresponding the veto (medium) working point as defined by the EGAMMA POG—designed99

to minimize any misidentification of light-parton jets, photon conversions, and electrons from100

heavy flavor hadron decays as prompt electrons. Muons are reconstructed by associating tracks101

in the muon system with those found in the silicon tracker [13]. Veto (signal) muon candidates102

are required to satisfy pT > 10 GeV (pT > 20 GeV) and |h| < 2.4 and the medium working point103

as defined by the MUON POG.104

To preferentially select leptons that originate in the decay of W and Z bosons, leptons are re-105

quired to be isolated from other PF candidates. Isolation is quantified using an optimized ver-106

sion of the “mini-isolation” variable originally suggested in Ref. [14], in which the transverse107

energy of the particles within a cone in h-f space surrounding the lepton momentum vector108

is computed using a cone size that scales as 1/p`
T, where p`

T is the transverse momentum of109

the lepton. In this analysis, mini-isolation, Irel
mini = Imini/p`

T, is defined as the transverse energy110

Imini of particles in a cone of radius Rmini-iso around the lepton, divided by p`
T. The transverse111

energy Imini is computed as the scalar sum of the pT values of the charged hadrons from the PV,112

neutral hadrons, and photons. The last term is a correction that estimates the average amount113

of pileup energy near the leptons by taking the contribution from charged candidates not orig-114

inating from the primary vertex and multiplying by 1
2 to account for the average difference in115

neutral and charged contributions from pileup.116

The cone radius Rmini-iso varies with the p`
T according to

Rmini-iso =

8
>><

>>:

0.2, p`
T  50 GeV

10 GeV
p`

T
, p`

T 2 (50 GeV, 200 GeV)

0.05, p`
T � 200 GeV.

(1)

The 1/p`
T dependence is motivated by considering a two-body decay of a massive parent par-117

ticle with mass M and large pT, for which the angular separation of the daughter particles118

is roughly DRdaughters ⇡ 2M/pT. The pT-dependent cone size reduces the rate of accidental119

overlaps between the lepton and jets in high-multiplicity or highly Lorentz-boosted events,120

particularly overlaps between b jets and leptons originating from a boosted top quark. The121

cone remains large enough to contain b-hadron decay products for non-prompt leptons across122

a range of p`
T values. Muons (electrons) must satisfy Irel

mini < 0.2 (0.1). The combined efficiency123

for the signal electron reconstruction and isolation requirements is about 50% at a p`
T of 20 GeV,124

increasing to 65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined recon-125

struction and isolation efficiencies for signal muons are about 70% at a p`
T of 20 GeV, increasing126

to 80% at 50 GeV and reaching a plateau of 95% at 200 GeV.127

As already noted in Section 1, the dominant background in the analysis arises from tt single-128

lepton events in which the lepton is a t decaying hadronically or is a light lepton that is not129

Table 2: Summary of object selection requirements.

Object pT [GeV] |h| Other
Jets 30 2.4 Anti-kt R=0.4, cleaned from leptons
Veto electrons 10 2.5 Cut-based Veto ID, Imini < 0.1
Veto muons 10 2.4 Medium ID, Imini < 0.2
Lepton tracks 5 2.4 Itk < 0.2, mT(tk, pmiss

T ) < 100 GeV
Hadronic tracks 10 2.4 Itk < 0.1, mT(tk, pmiss

T ) < 100 GeV

SUS-16-044:
Search for events with two h->bb and MET

1. Use the 4 jets with highest b-tag discriminant to construct 3 
possible H1H2 pairings

2. Select H1H2 pair minimizing mass difference:
3. Define ∆Rmax as the larger of the opening angle between the two 
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is roughly DRdaughters ⇡ 2M/pT. The pT-dependent cone size reduces the rate of accidental119
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cone remains large enough to contain b-hadron decay products for non-prompt leptons across122

a range of p`
T values. Muons (electrons) must satisfy Irel
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for the signal electron reconstruction and isolation requirements is about 50% at a p`
T of 20 GeV,124

increasing to 65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined recon-125

struction and isolation efficiencies for signal muons are about 70% at a p`
T of 20 GeV, increasing126
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As already noted in Section 1, the dominant background in the analysis arises from tt single-128

lepton events in which the lepton is a t decaying hadronically or is a light lepton that is not129

Table 2: Summary of object selection requirements.

Object pT [GeV] |h| Other
Jets 30 2.4 Anti-kt R=0.4, cleaned from leptons
Veto electrons 10 2.5 Cut-based Veto ID, Imini < 0.1
Veto muons 10 2.4 Medium ID, Imini < 0.2
Lepton tracks 5 2.4 Itk < 0.2, mT(tk, pmiss

T ) < 100 GeV
Hadronic tracks 10 2.4 Itk < 0.1, mT(tk, pmiss

T ) < 100 GeV

Significant Improvement: e.g. up to ~50% more signal for 15% more bkg
® Significantly improved lower mass limit (150 GeV in Higgsino mass)


