

THE BOREXINO RECENT RESULTS AND SOX MEASUREMENT PERSPECTIVES

Alessio Porcelli on behalf of the Borexino/SOX Collaborations – 27th October, 2017

www.uni-mainz.de

EXPERIMENTELLE TEILCHEN- UND ASTROTEILCHEN PHYSIK (ETAP)

Borexino and SOX Collaborations

Borexino Detector

Sited beneath Gran Sasso mountain (1400m of rock shielding), Italy.

 Motivations
 Borexino
 v-sol
 Modulation
 NMM
 Geo-v
 ... and more
 SOX
 Outlook
 Backups

 A. Porcelli
 The Borexino and SOX experiments
 27.10.2017
 4/22

Borexino signature

Indistinguishable from the natural radioactivity (β^{-}/γ components)

\Rightarrow Extreme low background required!!!

Data selection

 Raw spectrum 2 Muon cut B Fiducial Volume cut (every goal has an optimised FV) (x-axis: number of PMTs triggered in the event cluster $\sim E \cdot LY$)

Motivations Borexino Modulation NMM and more SOX Outlook v-sol A. Porcelli | The Borexino and SOX experiments 27.10.2017 6/22

Data selection

 Raw spectrum
 Muon cut
 Fiducial Volume cut (every goal has an optimised FV)
 (*x*-axis: number of PMTs triggered in the event cluster ~ E · LY)

Thorough statistical subtraction of cosmogenics, such as:

- α/β Gatti's parameter and neural network discrimination (trained on ²¹⁴Bi-²¹⁴Po coincidence)
 - ¹¹C Three Fold Coincidence (TFC): space-time veto applied on μn pairs coincidences. Average decay time of ¹¹C is 30 min.

. and more [arXiv:1308.0443]

 Motivations
 Borexino
 v-sol
 Modulation
 NMM
 Geo-v
 ... and more
 SOX
 Outlook
 Backups

 A. Porcelli | The Borexino and SOX experiments
 27.10.2017
 6/22

Data selection

 Raw spectrum
 Muon cut
 Fiducial Volume cut (every goal has an optimised FV)
 (*x*-axis: number of PMTs triggered in the event cluster ~ E · LY)

Thorough statistical subtraction of cosmogenics, such as:

- α/β Gatti's parameter and neural network discrimination (trained on ²¹⁴Bi-²¹⁴Po coincidence)
 - ¹¹C Three Fold Coincidence (TFC): space-time veto applied on μn pairs coincidences. Average decay time of ¹¹C is 30 min.

... and more [arXiv:1308.0443]

pp chain result

After first measurements of ν s from ⁷Be (862 keV) [PRL107(2011)141302], *pep* (1440 keV) [PRL108(2012)051302] and CNO (most stringent upper limit) [PRL108(2012)051302]

First direct observation of the low energy neutrinos coming from the *pp* fusion in the core of the Sun exposure of 408 days \times 71.3 ton

SOX

.... and more

Outlook

pp chain result

After first measurements of νs from ⁷Be (862 keV) [PRL107(2011)141302], *pep* (1440 keV) [PRL108(2012)051302] and CNO (most stringent upper limit) [PRL108(2012)051302]

First direct observation of the low energy neutrinos coming from the *pp* fusion in the core of the Sun exposure of 408 days \times 71.3 ton

Expected: $131 \pm 2 \text{ cpd}/100 \text{ t}$ Rate: $144 \pm 12|_{\text{stat}} \pm 10|_{\text{syst}} \text{ cpd}/100 \text{ t}$ Null hypothesis rejection: 10σ [Nature512(2014)383]

.... and more

SOX

Outlook

Simultaneous spectroscopy pp, ⁷Be, pep

All spectrum fitted simultaneously;

exposure of 71.3 ton \times 1291.51 days

Measurement of ⁸B solar neutrinos radial fit; exposure of 1.5 kton × year

Radius [m]

Low Energy (LE) range: 3.2÷5.8 MeV; $\langle E_{\nu} \rangle \sim$ 7.9 MeV Background: faction of μ and n, fast cosmogenics and ²¹⁴Bi, ¹¹Be, ²⁰⁸Tl, external γ from (n, γ) reactions

counts / 1494 d / 227 t / 0.10 m

10

High Energy (HE) range: $5.8\div16.7 \text{ MeV}; \langle E_{\nu} \rangle \sim 9.9 \text{ MeV}$ Background: fraction of μ , fast cosmogenics, ¹¹Be, external γ from (n, γ) reactions

Combining distribution gives $\langle E_{
u}
angle \sim$ 8.7 MeV

[arXiv:1709.00756]

Implication on the neutrino physics

- confirms MSW-LMA (Mikheyev-Smirnov-Wolfenstein effect with Large Mixing Angle scenario)
- High metallicity favoured

 Motivations
 Borexino
 v-sol
 Modulation
 NMM
 Geo-v
 ... and more
 SOX
 Outlook
 Backups

 A. Porcelli | The Borexino and SOX experiments
 27.10.2017
 10/22

Implication on the physics of the sun

✓ confirms SSM (Solar Standard Model)

- ✓ confirms Sun's stability in the past 10⁵ years
- discrimination between the HZ and LZ is now largely dominated by theoretical uncertainties (towards an high metallicity model -HZ-?)

⁷Be Modulation Periodical fluctuation on β-li

Periodical fluctuation on β -like signal from ⁷Be [arXiv:1701.07970]:

Sinusoidal Fit to the Event Rate

Lomb-Scargle (spectral analysis with periodic signal assumption)
 Empirical Mode Decomposition (no periodic signal assumption)

Results: T = 1 y modulation and eccentricity $\epsilon = (1.66 \pm 0.45)\%$ (null hypothesis rejection: CL 99.99%), compatible with Earth revolution

⁷Be Modulation

Periodical fluctuation on β -like signal from ⁷Be [arXiv:1701.07970]:

Sinusoidal Fit to the Event Rate

Lomb-Scargle (spectral analysis with periodic signal assumption)
 Empirical Mode Decomposition (no periodic signal assumption)

Results: T = 1 y modulation and eccentricity $\epsilon = (1.66 \pm 0.45)\%$ (null hypothesis rejection: CL 99.99%), compatible with Earth revolution

Lomb-Scargle (spectral analysis with periodic signal assumption) Empirical Mode Decomposition (no periodic signal assumption)

Results: T = 1 y modulation and eccentricity $\epsilon = (1.66 \pm 0.45)\%$ (null hypothesis rejection: CL 99.99%), compatible with Earth revolution

⁷Be Modulation

Periodical fluctuation on β -like signal from ⁷Be [arXiv:1701.07970]:

Sinusoidal Fit to the Event Rate

⁷Be Modulation

Periodical fluctuation on β -like signal from ⁷Be [arXiv:1701.07970]:

Sinusoidal Fit to the Event Rate

Lomb-Scargle (spectral analysis with periodic signal assumption)

Empirical Mode Decomposition (no periodic signal assumption)

Results: T = 1 y modulation and eccentricity $\epsilon = (1.66 \pm 0.45)\%$ (null hypothesis rejection: CL 99.99%), compatible with Earth revolution

 \Rightarrow Low energy neutrinos detected in Borexino have solar origin

Neutrino Magnetic Moment

Neutrino oscillation $\Rightarrow m_{\nu} \neq 0 \Rightarrow \mu_{\nu} \approx 3.2 \cdot 10^{-19} \left(\frac{m_{\nu}}{1 \text{ eV}}\right) \mu_B$

(μ_B = electron Bohr magneton)

• Current m_{ν} limits: $\mu_{\nu} < 10^{-18} \mu_B$:

- 7-8 order of magnitude of the current experimental limits
- Further extension of the Standard Model and New Physics:
 - $\mu_
 u \propto m_\ell$ instead $m_
 u$
 - expectations reach the levels of the current experimental limits

Neutrino Magnetic Moment

Neutrino oscillation $\Rightarrow m_{\nu} \neq 0 \Rightarrow \mu_{\nu} \approx 3.2 \cdot 10^{-19} \left(\frac{m_{\nu}}{1 \text{ eV}}\right) \mu_B$ (μ_B = electron Bohr magneton)

- Current m_{ν} limits: $\mu_{\nu} < 10^{-18} \mu_B$:
 - 7-8 order of magnitude of the current experimental limits
- Further extension of the Standard Model and New Physics:
 - $\mu_
 u \propto m_\ell$ instead $m_
 u$
 - expectations reach the levels of the current experimental limits

 $e^- - \nu$ scattering has additional term proportional to μ_{eff} (μ_{ν} for a mixture of neutrino mass eigenstates) $\frac{d\sigma_{EM}}{dT_e}(T_e, E_{\nu}) \propto \mu_{eff}^2 \left(\frac{1}{T_e} - \frac{1}{E_{\nu}}\right)$

 $\sigma_{\rm EM} \sim 1/T_e \Rightarrow$ scattered electron spectrum influenced at low energies

⁷Be strong change of the shape: major sensitivity to nmm
 pp change of the shape is almost equivalent to only the change of normalisation: constraining pp flux helps!

NMM constraining with Borexino

exposure of 71.3 ton × 1270.6 days [arXiv:1707.09355]

NMM constraining with Borexino

exposure of 71.3 ton × 1270.6 days [arXiv:1707.09355]

 $\begin{array}{c|c} \mu_e < 3.9 \cdot 10^{-11} \mu_B & \mu_\mu < 5.8 \cdot 10^{-11} \mu_B & \mu_\tau < 5.8 \cdot 10^{-11} \mu_B \\ \hline \text{Motivations Borexino v-sol Modulation NMM Geo-v ...and more SOX Outlook Backups \\ A. Porcelli | The Borexino and SOX experiments \\ \hline \begin{array}{c} 27,10,2017 \\ 27,10,2017 \end{array}$

NMM constrainings comparison

	Source	×10 ^{−11} μ _B @ 90% C.L.	Reference
	(Reactor)		
GEMMA TEXONO	$\overline{ u}_{e}$	$\mu_{ u e} <$ 2.9 $\mu_{ u e} <$ 7.4	Phys.Part.Nucl.Lett.10(2013)139 PRD75(2007)012001
	(Astrophysical)		
Raffelt & Dearborn Arcea-Díaz <i>et al.</i>	red giant cooling	$\mu_{ u e} < 0.3 \ \mu_{ u e} < 0.22$	Phys.Rept.320(1999)319 Astropart.Phys.70(2015)1
	(Solar)		
Super-Kamiokande	solar ⁸ B- ν above 5 MeV combining solar+KamLAND	$\mu_{\it eff} <$ 36 $\mu_{\it eff} <$ 11	PRL93(2004)021802
Borexino (old)	solar ⁷ Be- ν (192 days)	$\mu_{eff} < 5.4$	PRL101(2008)091302 arXiv:1707.09355
Dorexino (new)	Solar De ν and $pp-\nu$	Perr < 2.0	ar/av.1707.00000

 Motivations
 Borexino
 v-sol
 Modulation
 NMM
 Geo-v
 ... and more
 SOX
 Outlook
 Backups

 A. Porcelli
 The Borexino and SOX experiments
 27.10.2017
 15/22

Geo-neutrinos

Detection through inverse β -decay $\bar{\nu}_{e} + p \rightarrow n + e^{+}$ $n + H \rightarrow D + \gamma$ (2.2 MeV) Exposure: 2056 days [PRD92(2015)031101(R)] Log-Likelihood fit: Geo- ν out of Reactor- ν : **5.9** σ of significance out of null hypothesis • $S_{\text{qeo}} = 43.5^{+11.8}_{-10.4}|_{\text{stat}}|_{-2.4}|_{\text{syst}}$ TNU • $S_{\text{react}} = 96.6^{+15.6}_{-14.2}|_{\text{stat}}|_{-5.0}|_{\text{syst}}$ TNU

1 TNU (Terrestrial Neutrino Unit) = 1 event/year/10³² protons

Real time spectroscopy of geo- ν is possible with larger exposure

... it is also possibile to distinguish between different geological models

... and more physics is achieved

- Testing ν excess from LIGO and VIRGO events (Gravitational Waves) [arXiv:1706.10176]
- *ν*-GRB correlation: best limits on the neutrino fluence of all flavours below 7 MeV [Astro.Phys.86(2017)11]
- ☺ Limits on rare processes: i.e. $\tau_{e^- \to \gamma \nu} > 6.6 \cdot 10^{28}$ y @ 90% CL [PRL115(2015)231802]
- In Muon seasonal modulation: $\phi = 179 \pm 6$ days, correlated to atmospheric temperature with $\alpha_T = 0.93 \pm 0.04$ [JCAP05(2012)015]
- Detailed studies of the cosmogenics in liquid scintillator [arXiv:1308.0443]
- ☺ $\nu_e \rightarrow \bar{\nu}_e$ oscillation: transition probability < 1.3 · 10⁻⁴ @ 90% CL for $E_{\bar{\nu}}$ > 1.8 MeV [Phys.Lett.B696(2011)191]

... and more physics is achieved (and will be)

- Testing ν excess from LIGO and VIRGO events (Gravitational Waves) [arXiv:1706.10176]
- *ν*-GRB correlation: best limits on the neutrino fluence of all flavours below 7 MeV [Astro.Phys.86(2017)11]
- ☺ Limits on rare processes: i.e. $\tau_{e^- \to \gamma \nu} > 6.6 \cdot 10^{28}$ y @ 90% CL [PRL115(2015)231802]
- In Muon seasonal modulation: $\phi = 179 \pm 6$ days, correlated to atmospheric temperature with $\alpha_T = 0.93 \pm 0.04$ [JCAP05(2012)015]
- Detailed studies of the cosmogenics in liquid scintillator [arXiv:1308.0443]
- [☺] $\nu_e \rightarrow \bar{\nu}_e$ oscillation: transition probability < 1.3 · 10⁻⁴ @ 90% CL for $E_{\bar{\nu}} > 1.8$ MeV [Phys.Lett.B696(2011)191]
- ... a more stringent CNO limit (or a possible observation?)
- ... LIGO+VIRGO+IceCube+LVD+KamLand+Borexino joint collaboration for multimessenger observation of next galactic Supernova

Sterile neutrino

 ν_s : 4th neutrino eigenstate that doesn't interact weak (only gravitationally)

experimental hints
 ν_e/ν_e disappearance:
 reactor anomaly (solved with recent Daya Bay results [PRL118(2017)251801])
 GALLEX/SAGE anomaly (≈ 2.8σ)

- $\nu_e/\overline{\nu}_e$ appearance:
 - miniBooNE and LSND accelerator anomalies $(\approx 3.8\sigma)$

⇒ sterile neutrino in eV mass range?

A global fit gives $0.82 < \Delta m_{41}^2 < 2.14 \text{ eV}^2$ (3 σ) (not yet updated after Daya Bay results)

> more experimental data with a short-baseline:

... and more

SOX

SOX (CeSOX now, CrSOX in the future?)

... further reactor experiments

Outlook

SOX (Short distance Oscillation with boreXino)

A $\bar{\nu}_{e}$ source (¹⁴⁴Ce, 100÷150 kCi of activity) is placed underground. 8.5 m beneath the Borexino scintillator center (CeSOX) Signature: $\bar{\nu}_e + p \rightarrow e^+ + n$ (inverse β -decay)

e⁺ Prompt: E and L info of $\bar{\nu}_e$ (resolution: 5% and 10 cm @ 1 MeV)

Motivations

Delayed: time-space-energy coincidence (almost background free)

SOX (Short distance Oscillation with boreXino)

A $\bar{\nu}_e$ source (¹⁴⁴Ce, 100÷150 kCi of activity) is placed underground, 8.5 m beneath the Borexino scintillator center (CeSOX) **Signature**: $\bar{\nu}_e + p \rightarrow e^+ + n$ (inverse β -decay)

 e^+ Prompt: *E* and *L* info of $\bar{\nu}_e$ (resolution: 5% and 10 cm @ 1 MeV) *n* Delayed: time-space-energy coincidence (almost background free)

Observables (as a function of *E* & *L*):

- Rate: counted/predicted w/o oscillation (disappearance)
- Shape: periodic distribution Examples:
- Disappearance + Periodic
 Oscillation (Rate+Shape)
- Disappearance + Periodic
 Oscillation (Rate+Shape)
- Disappearance only (Rate)

SOX

.... and more

Outlook

SOX sensitivity

Grey contours: preferred region of the anomalous neutrino experiments @ CLs of 90%, 95% and 99% [J.Phys.G43(2016)033001]

SOX sensitivity

Rate: knowledge of

- source activity monitoring
- neutrino spectrum
- fiducial volume

Shape:

- no dependence on systematics in scale
- direct evidence of oscillation

Rate+Shape: exclude great part of 99% region!

Grey contours: preferred region of the anomalous neutrino experiments @ CLs of 90%, 95% and 99% [J.Phys.G43(2016)033001]

SOX sensitivity

Rate: knowledge of

- source activity monitoring
- neutrino spectrum
- fiducial volume

Shape:

- no dependence on systematics in scale
- direct evidence of oscillation
- Rate+Shape: exclude great part of 99% region!

Grey contours: preferred region of the anomalous neutrino experiments @ CLs of 90%, 95% and 99% [J.Phys.G43(2016)033001]

Stay tuned and Thank you!

 Motivations
 Borexino
 v-sol
 Modulation
 NMM
 Geo-v
 ...and more
 SOX
 Outlook
 Backups

 A. Porcelli
 The Borexino and SOX experiments
 27.10.2017
 22/22

Backups

Purification phase

Between Phase I and Phase II, 1 year of purification occurred: 6 cycles of water extraction reduced drastically the background contaminants!

Isotope	Typical	Required	Phase I	Phase II
¹⁴ C/ ¹² C	10 ⁻¹² (cosmogenic)	$\leq 10^{-18}$	$(2.69 \pm 0.06) \cdot 10^{-18}$	unchanged
⁸⁵ Kr	1 Bq/m ³ (air)	\leq 1 cpd/100 t	(30 ± 5) cpd/100 t	\leq 5 cpd/100 t
²¹⁰ Bi		not specified	\sim 40 cpd/100 t	(20 ± 5) cpd/100 t
²¹⁰ Po		not specified	\sim 20 cpd/100 t	unchanged
²²² Rn	100 atoms/cm ³ (air)	\leq 10 cpd/100 t	\sim 1 cpd/100 t	unchanged
³⁹ Ar	17 mBq/m ³ (air)	\leq 1 cpd/100 t	≪ ⁸⁵ Kr	≪ ⁸⁵ Kr
⁴⁰ K	2 · 10 ⁻⁶ (dust)	\leq 10 $^{-18}$ g/g	\leq 0.4 \cdot 10 $^{-18}$ g/g	unchanged
²³² Th	2 · 10 ⁻⁵ (dust)	\leq 10 $^{-16}$ g/g	$(3.8\pm0.8)\cdot10^{-18}$ g/g	$< 1.0 \cdot 10^{-19}$ g/g
²³⁸ U	2 · 10 ⁻⁵ (dust)	\leq 10 $^{-16}$ g/g	$(5.3\pm0.5)\cdot10^{-18}$ g/g	$< 0.8 \cdot 10^{-19}$ g/g

Contaminants summary:

N.B.: Borexino core is the most radio-clean spot on Earth with over 10 orders of magnitude below typical radioactivity levels

 Motivations
 Borexino
 v-sol
 Modulation
 NMM
 Geo-v
 ... and more
 SOX
 Outlook
 Backups

 A. Porcelli | The Borexino and SOX experiments
 27.10.2017
 23/22

- Association of neutrons to a given μ track
- vetoing region in space and time to exclude decay signatures from ¹¹Cs associated to μn pairs

lpha/eta Pulse-Shape Discrimination

- Gatti's parameter G_{αβ} is trained on ²¹⁴Bi-²¹⁴Po coincidences
- Current improvement with Multi-Layer-Perceptron (MLP) algorithm, based on neural network

SOX

... and more

Geo-v

Backups

Outlook

Geo neutrinos: geological models

Detection through inverse β -decay

 $ar{
u}_{e} + p
ightarrow n + e^{+}$ $n + H
ightarrow D + \gamma (2.2 \text{ MeV})$

Exposure: 2056 days

[PRD92(2015)031101(R)]

Log-Likelihood fit: Geo- ν out of Reactor- ν :

- ²³²Th and ²³⁸U left free parameters
- Chondritic assumption: m(²³⁸U)/m(²³²Th) = 1/3.9
 - Real time spectroscopy of geo neutrinos is possible with larger exposure

1 TNU (Terrestrial Neutrino Unit) = 1 event/year/10³² protons

 Motivations
 Borexino
 v-sol
 Modulation
 NMM
 Geo-v
 ...and more
 SOX
 Outlook
 Backups

 A. Porcelli | The Borexino and SOX experiments
 27.10.2017
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22
 26/22<