

File Systems

Roland Laifer KIT, SCC

Baden-Württemberg MINISTERIUM FÜR WISSENSCHAFT, FORSCHUNG UND KUNST Bundesministerium für Bildung und Forschung

www.bwhpc.de / www.nhr.kit.edu

Reference: bwHPC Wiki

- Most information given by this talk can be found at https://wiki.bwhpc.de
 - select cluster
 - then select File Systems

Material: Slides & Scripts

- https://indico.scc.kit.edu/e/hpc_course_2023-03-29
- BwUniCluster 2.0: /opt/bwhpc/common/workshops/2023-03-29/
- HoreKa: /software/all/workshop/2023-03-29/

How to read the following slides

Abbreviation/Colour code	Full meaning
<pre>\$ command -option value</pre>	<pre>\$ = prompt of the interactive shell The full prompt may look like: user@machine:path\$ The command has been entered in the interactive shell session</pre>
<integer> <string></string></integer>	<> = Placeholder for integer, string etc
foo, bar	Metasyntactic variables

Parallel file systems

Most important parallel file systems

Lustre

- Used on most of the largest HPC systems
- IBM Spectrum Scale (aka GPFS)
 - Used in industry and on many HPC systems
- BeeGFS
 - Underlying file system for BeeGFS On Demand (BeeOND)

Lustre, GPFS, BeeGFS

- Follow POSIX standard, i.e. applications just work
- Offer large capacity and parallel access from many nodes
- Good performance for huge files and access with large chunks
- Dislike small files, random I/O, or many metadata (open, close, stat, create, remove) operations
 - Hence for some applications I/O on laptop with SSD might be faster
 - Reasons: communication over network, locking to guarantee consistency

HPC clusters and file systems @ KIT

5 2023/03/29 Introductory Course: File Systems

Example bwUniCluster 2.0: File Systems and their location

How to use each File System (1)

\$HOME = Home directory

- \rightarrow Software, configuration files, final results
- \rightarrow Omit heavy I/O
- Workspaces = Working directories with lifetime
 - \rightarrow Intermediate results, huge input/output data sets
 - \rightarrow Scratch data which needs to be shared between nodes
 - \rightarrow Omit small files, tiny block sizes, lots of metadata operations

If not possible to omit, KIT and HoreKa users can use Workspaces on flash storage

\$TMP, \$TMPDIR, \$SCRATCH = Separate file system on each node using local disks

- \rightarrow Data is only available during job runtime on the local node
- \rightarrow Possibly transfer data here within a batch job
- \rightarrow All sorts of I/O allowed

How to use each File System (2)

BeeOND = Private file system for batch job

- \rightarrow Data is only available during job runtime on the batch job nodes
- \rightarrow Possibly transfer data here within a batch job
- → All sorts of I/O allowed, only available on bwUniCluster 2.0 and HoreKa

External storage

- \rightarrow Archive scientific data, move data here when data sets become too large
- \rightarrow Each oganization has different solutions, example is LSDF at KIT
- \rightarrow Use huge files or compressed archives

Summary

- \rightarrow Use \$HOME for permanent data
- \rightarrow Use workspaces for huge files and sequential I/O
- \rightarrow Use \$TMP or BeeOND with many (> 10000) small files or random I/O

File System properties of bw clusters and of HoreKa

Property	\$HOME	Workspace	\$TMP	BeeOND ¹	LSDF ¹	WS on $flash^1$
Visibility	all nodes	all nodes	local node	job nodes	login + job	all nodes
Lifetime	permanent	few weeks	job runtime	job runtime	permanent	few weeks
Usable capacity	40 GB - 10 TB	10 TB - 250 TB	128 GB - 7 TB	N * 750 GB	per project	1 TB
Usable inodes	2 mil - unlinited	1 mil - unlimited	unlimited	unlimited	per project	5 mil
Backup	yes, except Helix	no	no	no	yes	no
Total perf.	medium, 100s - 1000s MB/s	huge, 10s GB/s	100s MB/s per node	N * 100s MB/s	10s GB/s	huge, 10s GB/s

¹ Only available on bwUniCluster 2.0 and HoreKa

\$HOME = Home directory

- \$HOME is visible on all nodes of a cluster
- Properties of \$HOME on different clusters

Cluster	Quota capacity limit	Quota file limit	Backup
JUSTUS 2	400 GB per user	2 mill. per user	Yes
Helix	200 GB per user	unlimited	No
NEMO	100 GB per user	unlimited	Yes
BinAC	40 GB per user	unlimited	Yes
BwUniCluster 2.0	1000 GB per user also limit per organization	10 mill. per user	Yes
HoreKa	10 TB per project	10 mill. per project	Yes

\$HOME on bwUniCluster 2.0

Organization quota usage and limits:

\$ lfs quota -ph \$(grep \$(echo \$HOME | sed -e "s|/[^/]*/[^/]*\$||") \
 /pfs/data5/project_ids.txt | cut -f 1 -d\) \$HOME

\$HOME / \$PROJECT on HoreKa

\$HOME and **\$PROJECT** are identical if your account is member of one project

Otherwise to change to another project which will also modify \$PROJECT:

\$ newgrp <another_project_group>

- User's quota usage and limits:
 - First start an interactive job:

```
$ salloc -p dev_cpuonly -n 1 -t 20 --mem=500
```

Show usage and limits of your project group on the \$HOME file system:

\$ /usr/lpp/mmfs/bin/mmlsquota -j \$PROJECT_GROUP --block-size G -C hkn.scc.kit.edu hkfs-home

Workspaces = Working directories with lifetime

- **Workspace**: lifetime on allocated folder
 - Available on all clusters, visible on all nodes of a cluster
 - HowTo:
 - → https://wiki.bwhpc.de/e/Workspace

<pre>\$ ws_allocate foo 10</pre>	Allocate workspace foo for 10 days
\$ ws_list	List your workspaces
<pre>\$ ws_find foo</pre>	Get absolute path of workspace foo
\$ ws_extend foo 5	Extend lifetime of your workspace <i>foo</i> by 5 days from now. Number of extensions depends on cluster.
<pre>\$ ws_release foo</pre>	Manually erase your workspace foo
\$ wsF <i>ffuc</i>	Select non default workspace file system with -F (works for any command)

Properties of Workspaces on different clusters

Cluster	Capacity limit	File limit	Max lifetime	Max extensions
JUSTUS 2	20 TB per user	5 mill. per user	90 days	unlimited
Helix	10 TB per user	unlimited	30 days	10 times
NEMO	10 TB per user	1 mill. per user	100 days	99 times
BinAC	unlimited	unlimited	30 days	3 times
BwUniCluster 2.0	40 TB per user	30 mill. per user	60 days	3 times
HoreKa	250 TB per user	50 mill. per user	60 days	3 times

File system on each node using local disks

Node local storage on SSDs

- Available on all clusters but usage via different environment variables
 - \$TMP: HoreKa, bwuniCluster 2.0; \$TMPDIR: Helix, NEMO, BinAC; \$SCRATCH: JUSTUS 2
- Separate private directory on each node of a batch job, created at job start and destroyed at job end
 - Make sure you have copied your data back to a workspace or \$HOME within your job
- HowTo:
 - → https://wiki.bwhpc.de/e/BwUniCluster2.0/Hardware_and_Architecture#.24TMP

Usage example

Outside batch job create archive with compressed input dataset on a workspace:

\$ tar -cvzf \$(ws_find data-ssd)/dataset.tgz dataset/

- In batch script extract compressed input dataset to local SSD: tar -C \$TMP/ -xvzf \$(ws_find data-ssd)/dataset.tgz
- In batch script application reads data from dataset on SSD and writes results to SSD:

myapp -input \$TMP/dataset/myinput.csv -outputdir \$TMP/results

In batch script save results to a workspace:

rsync -av \$TMP/results \$(ws_find data-ssd)/results-\${SLURM_JOB_ID}/

BeeOND = Private file system for batch job

BeeOND (BeeGFS On-Demand)

- Available only on bwUniCluster 2.0 and on HoreKa
- Private file system for batch job, created at job start and destroyed at job end
 - Make sure you have copied your data back to a workspace or \$HOME within your job
- Parallel file system, visible on nodes allocated to a batch job
- Uses local disks (SSDs) of each node to store the data
 - Capacity is limited: 750 GB * number of nodes used in batch job
- Request creation in job script or on command line:

#SBATCH --constraint=BEEOND

\$ sbatch -C BEEOND ...

Use path below /mnt/odfs/\${SLURM_JOB_ID} to access BeeOND, e.g.

\$ cd /mnt/odfs/\${SLURM_JOB_ID}/stripe_default

HowTo:

→ https://wiki.bwhpc.de/e/BwUniCluster_2.0_Hardware_and_Architecture#BeeOND_.28BeeGFS_On-Demand.29

LSDF Online Storage = External storage for special users

LSDF Online Storage

- Available only on bwUniCluster 2.0 and on HoreKa for special users
 - Intended usage for scientific measurement data and data-intensive scientific simulation results
 - → https://www.scc.kit.edu/en/services/11228.php
- Visible on login nodes and on batch job nodes if access was requested
 - Access from external with different protocols is also possible
- Request access in job script or on command line:

#SBATCH --constraint=LSDF

\$ sbatch -C LSDF ...

Use environment variables \$LSDF, \$LSDFPROJECTS, \$LSDFHOME to access, e.g.

\$ cd \${LSDF}

HowTo:

→ https://wiki.bwhpc.de/e/BwUniCluster_2.0_Hardware_and_Architecture#LSDF_Online_Storage

Workspaces on flash storage

Workspaces on flash storage

Available only on bwUniCluster 2.0 and on HoreKa for KIT users and HoreKa users

- File system is visible on all nodes of both clusters
- All storage devices are based on flash (no hard disks)
- \rightarrow low access times and higher IOPS rates
- Use via workspace commands
 - Add switch -F ffuc on bwUniCluster 2.0 and -F ffhk on HoreKa
 - Path to each workspace is visible and can be used on both clusters
- Show quota usage and limits:

\$ lfs quota -uh \$(whoami) /pfs/work8

HowTo:

→ https://wiki.bwhpc.de/e/BwUniCluster2.0/Hardware_and_Architecture#Workspaces_on_flash_storage

Allocate two workspaces

```
$ ws allocate test 30
Info: could not read email from users config ~/.ws user.conf.
Info: reminder email will be sent to local user account
Info: creating workspace.
/pfs/work7/workspace/scratch/myuser-test
remaining extensions : 3
remaining time in days: 30
$ ws allocate -F ffuc scratch 50
Info: could not read email from users config ~/.ws user.conf.
Info: reminder email will be sent to local user account
Info: creating workspace.
/pfs/work8/workspace/ffuc/scratch/myuser-scratch
remaining extensions : 3
remaining time in days: 50
```


List workspaces

\$ <mark>ws_list</mark> id: scratch	
workspace directory	: /pfs/work8/workspace/ffuc/scratch/ <i>myuser</i> -scratch
remaining time	: 49 days 23 hours
creation time	: Wed Oct 6 18:59:11 2021
expiration date	: Thu Nov 25 17:59:11 2021
filesystem name	: pfs6wor8
available extensions	: 3
id: test	
workspace directory	: /pfs/work7/workspace/scratch/ <i>myuser</i> -test
remaining time	: 29 days 23 hours
creation time	: Wed Oct 6 18:55:17 2021
expiration date	: Fri Nov 5 17:55:17 2021
filesystem name	: pfs5wor7
available extensions	: 3

Find workspace path and switch to it

```
$ ws_find -F ffuc scratch
/pfs/work8/workspace/ffuc/scratch/myuser-scratch
```

\$ ws_find test
/pfs/work7/workspace/scratch/myuser-test

\$ cd \$(ws_find test)
\$ pwd
/pfs/work7/workspace/scratch/myuser-test

Extend the lifetime of a workspace

```
$ ws extend test 60
Info: could not read email from users config ~/.ws user.conf.
Info: reminder email will be sent to local user account
Info: extending workspace.
Info: changed mail address to myuser
Info: changed reminder setting.
/pfs/work7/workspace/scratch/myuser-test
remaining extensions : 2
remaining time in days: 60
$ ws list test
id: test
    workspace directory : /pfs/work7/workspace/scratch/myuser-test
    remaining time : 59 days 23 hours
    creation time : Wed Oct 6 19:01:02 2021
    expiration date : Sun Dec 5 18:01:02 2021
    filesystem name : pfs5wor7
    available extensions : 2
```


Release workspaces

\$ ws_release test

\$ ws_release -F ffuc scratch

\$ ws_list

