Status of ALPS II

In Search of the Axion

Frädrich, Henry DESY Karlsruhe, 14.09.2023

Universität Hamburg

Why Axion?

Motivation

- Axions solve the Strong CP-Problem
 - CP-Symmetry is conserved at $\theta = 0$
 - θ is arbitrarily close to 0 (Experiments: $\theta < 10^{-10}$)
 - Peccei-Quinn-Symmetry solves this Problem
 - \rightarrow Axion
- Excellent cold dark matter candidate
- Astrophysical Hints

https://arxiv.org/abs/1812.02669

Axion \Leftrightarrow Photon Interaction

How to look for the Axion

- (Inverse) Sikivie Effect
- Axion ⇔ Photon mixing in background magnetic field
- $g_{a\gamma\gamma}$ and m_a are unknown, but there are models and hints

 $g_{a\gamma\gamma}$ $g_{a\gamma\gamma}$ a

P. Sikivie Phys. Rev. Lett. **51**, 1415 (1983)

 $\mathcal{L}_{a\gamma}=g_{a\gamma\gamma}a\mathrm{E}$ • B

Light Shining Through a Wall

Light Shining Through a Wall

Light Shining Through a Wall with Optical Cavities

Optical Cavities in ALPS II

Optical Cavities in ALPS II

Production Cavity (PC)

- Builds up the power of stored light circulating in the magnetic field
- Increases axion particle flux
- Will be built after reaching background goals

Regeneration Cavity (RC)

- Bulids up regenerated axion field.
- High resonant enhancement β > 7,000
 over a long baseline (120 m) cavity
- World record light storage time

Model Independent Experiments

Axion Search Overview

Heterodyne Detection

Overlay the local oscillator (LO) and the regenerated photons in the cavity

- Photodetector detects "beatnote" (peak in frequency space)
- Averaging over long periods of time
 - \rightarrow Shot noise averages out
 - \rightarrow Signal sums up
- Limiting factors

٠

- Optical shot noise
- Backgrounds

 $P_{LO} + P_a + 2\sqrt{P_{LO}P_a}\cos[2\pi(\nu_a - \nu_{LO})t]$

Graphic courtesy of Li-Wei Li

Initial Science Run

> ~150 000 seconds of data above the calibration requirement

Outlook

Currently worked on

- Automatic run procedure + autolocking
 - \rightarrow 1 Million Second Run

Near Future

- Production Cavity
- Upgrade optics
- \rightarrow reaching design sensitivity

Thanks for Listening

Control System in ALPS II

Challenges

- Get the HPL resonant with the RC cavity
- Don't get any of the HPL light into the cavity

Axion Experiments at Desy

Experiments using Sikivie Effect:

- Haloscopes
- Helioscopes
- Light Shining throught Wall

P. Sikivie Phys. Rev. Lett. **51**, 1415 (1983)

Source	Experiments	Model dependence
Relic CDM axions		High
Solar axions	(baby)	Low
Laboratory- prepared axions	AL PS II	Very Low

Stray Light

- Light from the HPL falls onto detector
- Currently ~ $1/300 \frac{Photons}{Second}$
- Reason Production Cavity is not installed yet