

A Look at General Neutrino Interactions with KATRIN

Matter and the Universe Days 2023

Caroline Fengler for the KATRIN Collaboration | September 14th, 2023

www.kit.edu

Theory of General Neutrino Interactions (GNI)

- Generalisation of neutrino Non-Standard Interactions (NSI)
- Considers scalar, pseudoscalar, vector, axial vector or tensor interactions of neutrinos with fermions:

$$\begin{split} \mathcal{L}_{GNI}^{NC} &= -\frac{G_F}{\sqrt{2}} \sum_{j=1}^{10} \stackrel{(\sim)}{\epsilon}_{j,f} \left(\bar{v} \, O_j \, v \right) \left(\bar{f} \, O'_j \, f \right) \\ \mathcal{L}_{GNI}^{CC} &= -\frac{G_F V_{Y\delta}}{\sqrt{2}} \sum_{j=1}^{10} \stackrel{(\sim)}{\epsilon}_{j,ud} \left(\bar{e} \, O_j \, v \right) \left(\bar{u} \, O'_j \, d \right) + h.c. \end{split}$$

 Assume that GNI arise from heavy New Physics → Map low energy GNI operators onto dim 6 SM(N)EFT terms.

$$\mathcal{L}_{EFT}(\phi) = \mathcal{L}_{SM}(\phi) + \sum_{n \ge 5} \frac{1}{\Lambda^{n-4}} C_i^{(n)} O_i^{(n)}(\phi)$$

 \rightarrow Enables broad search for New Physics through precision measurements.

Bischer and Rodejohann, Nucl. Phys. B, 10.1016/j.nuclphysb.2019.114746

Search for General Neutrino Interactions

Possible interaction channels:

- Neutrino oscillation
- LFV in μ- and τ-decays
- Neutrino scatterings, e.g. CEvNS
- π-decay
- β-decay
- Different interaction channels are sensitive to different combinations of *ε_i* in GNI Lagrangian.

Search for General Neutrino Interactions

Possible interaction channels:

- Neutrino oscillation
- LFV in μ- and τ-decays
- Neutrino scatterings, e.g. CEvNS
- π-decay
- β-decay
- Different interaction channels are sensitive to different combinations of ε_i in GNI Lagrangian.
- GNI cause modifications to the β-spectrum.
 - \rightarrow Energy-dependent contributions to the rate in KATRIN
 - → First proof of principle study!

The KATRIN Experiment: Overview

70 m long set-up: a gaseous tritium source & high resolution MAC-E filter

Karlsruhe Institute of Technology

Tritium β -decay

Continuous β -spectrum described by Fermi's Golden Rule, measurement of effective mass $m(\nu_e)$ based on kinematic parameters & energy conservation.

$$\frac{d\Gamma}{dE} \propto (E_0 - E) \sqrt{(E_0 - E)^2 - m^2(\nu_e)} \Theta(E_0 - E - m_i)$$

GNI @ KATRIN

$$\frac{d\Gamma_{\rm GNI}}{dE} = \frac{d\Gamma_{\rm SM}}{dE} \sum_{k=\beta,N} \sqrt{(E_0 - E)^2 - m_k^2} \cdot \xi_k \left[1 - b'_k \frac{m_k}{E_0 - E}\right] \Theta(E_0 - m_k - E)$$

- Total differential decay rate for left-handed neutrino and right-handed neutrino
- Dimensionless coefficients ξ_k and b'_k defined in terms of factors ε, ê, U_{e4} and nuclear form factors g_V, g_S, g_T and g_A.
- Recover SM for $\xi_N = b'_k = 0$.

Bischer and Rodejohann, Nucl. Phys. B, 10.1016/j.nuclphysb.2019.114746

GNI @ KATRIN

$$\frac{d\Gamma_{\rm GNI}}{dE} = \frac{d\Gamma_{\rm SM}}{dE} \sum_{k=\beta,N} \sqrt{(E_0 - E)^2 - m_k^2} \cdot \xi_k \left[1 - b'_k \frac{m_k}{E_0 - E}\right] \Theta(E_0 - m_k - E)$$

 Ordering of systematic effects of GNI agrees with ordering from neutrino mass analysis.

 \rightarrow Proof of principle worked!

- Mild influence of GNI contributions b[']_β on neutrino mass sensitivity.
 - \rightarrow Possible to probe different GNI scenarios!
- Sensitivity is dominated by statistics.
 - \rightarrow Further improvement by adding more data.

Preliminary Study on KNM2 MC at 95 % CL

Preliminary Study on KNM2 MC at 95 % CL

Able to probe sterile neutrino parameter space with GNI model using $b'_{N} = 0$ and $\xi_N = \tan^2 \theta \cdot (g_A^2 + 3g_V^2).$ \rightarrow Allows cross-check between GNI and 3 + 1 v

Obtained expected sensitivity shapes, excluding large mixing angles.

- Ordering of systematic effects of GNI agrees with ordering from sterile neutrino mass analysis.
 - \rightarrow Proof of principle worked!

model.

Δm²₄₁ (eV²) ₅01 10^{1} preliminar 10^{0} 10^{-2} 10^{-1} 100 ξ_N/ξ_B

Institute for Astroparticle Physics

 10^{1}

- Single type of interaction:

 ϵ_T gives strongest constraints at *O*(10⁻²).
 Constraints for similar parameters from other
 experiments (LHC, neutron decay) up to *O*(10⁻³).
- Right-handed W boson:

Only consider vector-like interactions.

Leptoquark:

Different combinations of interactions possible, dependent on Leptoquark model.

Charged Higgs:

Only consider scalar interactions.

- Sensitivity is dominated by statistics.
 - \rightarrow Further improvement by adding more data.

10.1016/j.ppnp.2018.08.002, 10.1002/andp.201300072

Preliminary Study on KNM2 MC at 95 % CL

Institute for Astroparticle Physics

Summary & Outlook

- Theory of General Neutrino Interactions is a **powerful tool** in the search for New Physics.
- KATRIN's high-precision measurement of the β-spectrum allows to constrain combinations of GNI contributions.
- More concrete constraints are possible when considering specific New Physics models.
- Sensitivity will continuously improve by adding more data.
- Analysis on data is almost finalized and will be released soon!

Thank you for your attention!

We acknowledge the support of Helmholtz Association (HGF): Ministry for Education and Research BMBF (JG5A179M, G5A17PK2, O5A17PK2, O5A17PDA, O5A17PDA, O5A17PDA, O5A17PA, O5A1

Institute for Astroparticle Physics

Backup

Flavour Space Tensor

.

$$\mathcal{L}_{GNI}^{CC} = -\frac{G_F V_{\gamma\delta}}{\sqrt{2}} \sum_{j=1}^{10} {\binom{(\sim)}{\epsilon_{j,ud}}}^{\alpha\beta\gamma\delta} \left(\bar{e}_{\alpha} O_j v_{\beta}\right) \left(\bar{u}_{\gamma} O_j' d_{\delta}\right) + h.c.$$

- $\epsilon_{L/R}$: Coupling for left-/right-handed vector-like interactions
- ϵ_S : Coupling for scalar interactions
 - ϵ_P : Coupling for pseudo-scalar interactions
- ϵ_T : Coupling for tensor-like interactions

•
$$C = \frac{g_S^2}{g_V^2 + 3g_A^2} \approx 0.17945 \text{ for } \epsilon_S^N \text{ or } \widetilde{\epsilon_S^N}$$

•
$$C = \frac{48g_T^2}{g_V^2 + 3g_A^2} \approx 8.06537 \text{ for } \epsilon_T^N \text{ or } \widetilde{\epsilon_T^N}$$

See results on the next slides! .

GNI - ϵ and ϵ^2 .

- For different ϵ -parameters we get slightly different transformations
- $q \ge C \cdot |\epsilon|^2$ with

•
$$C = \frac{1}{1 - \frac{1}{2} |\epsilon|^2}$$
 for ϵ_L^N or ϵ_R^N

•
$$C = 1$$
 for $\widetilde{\epsilon_L^N}$ or $\widetilde{\epsilon_R^N}$

$$C = \frac{g_S^2}{g_V^2 + 3g_A^2} \approx 0.17945 \text{ for } \epsilon_S^N \text{ or } \widetilde{\epsilon_S^N}$$

$$= rac{g_S^2}{g_V^2 + 3g_A^2} pprox 0.17945 ext{ for } \epsilon_S^N ext{ or } \widetilde{\epsilon_S^N}$$

$$\xi_{\beta}c_{\beta} = \sum_{n=1}^{\infty} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{$$

$$\begin{split} & -3g_Ag_T \operatorname{SRe}\left[(\widehat{\epsilon}_L - \epsilon_R)(\epsilon_T)^* - (\widetilde{\epsilon}_L - \widetilde{\epsilon}_R)(\widetilde{\epsilon}_T)^*\right],\\ & \xi_\beta b'_\beta = g_V g_S \operatorname{2Re}\left[(\widehat{\epsilon}_L + \epsilon_R)\widetilde{\epsilon}_S + \epsilon_S(\widetilde{\epsilon}_L + \widetilde{\epsilon}_R)^*\right] \\ & -3g_Ag_T \operatorname{SRe}\left[(\widehat{\epsilon}_L - \epsilon_R)(\widetilde{\epsilon}_T)^* - (\widetilde{\epsilon}_L - \widetilde{\epsilon}_R)(\epsilon_T)^*\right],\\ & \xi_\beta c_\beta = \operatorname{2Re}\left[g_V^2(\widehat{\epsilon}_L + \epsilon_R)(\widetilde{\epsilon}_L + \widetilde{\epsilon}_R) + g_S^2 \epsilon_S(\widetilde{\epsilon}_S)^*\right] \\ & + \operatorname{2Re}\left[-3g_A^2(\widehat{\epsilon}_L - \epsilon_R)(\widetilde{\epsilon}_L - \widetilde{\epsilon}_R)^* + 48g_T^2 \epsilon_T(\widetilde{\epsilon}_T)^*\right].\\ & \xi_N = g_V^2\left(|U_{e4} + \epsilon_L + \epsilon_R|^2 + |\widetilde{\epsilon}_L + \widetilde{\epsilon}_R|^2\right) + \frac{g_S^2\left(|\epsilon_S|^2\right)}{g_S^2\left(|\epsilon_S|^2\right)} + |\widetilde{\epsilon}_S|^2\right) \\ & + 3g_A^2\left(|U_{e4} + \epsilon_L - \epsilon_R|^2 + |\widetilde{\epsilon}_L - \widetilde{\epsilon}_R|^2\right) + 48g_T^2\left(|\epsilon_T|^2 + |\widetilde{\epsilon}_T + \widetilde{\epsilon}_N + \delta_N + g_V g_S^2 \operatorname{2Re}\left[(U_{e4} + \epsilon_L + \epsilon_R)(\epsilon_S)^* + (\widetilde{\epsilon}_L + \widetilde{\epsilon}_R)(\widetilde{\epsilon}_S)^*\right] \end{split}$$

 $+ \frac{3g_A^2 \left(|\widehat{\epsilon}_L - \epsilon_R|^2 + |\widetilde{\epsilon}_L - \widetilde{\epsilon}_R|^2 \right) + 48g_T^2 \left(|\epsilon_T|^2 + |\widetilde{\epsilon}_T|^2 \right),$

 $\xi_{\beta} = g_V^2 \left(|\widehat{\epsilon}_L| + \epsilon_R|^2 + |\widetilde{\epsilon}_L + \widetilde{\epsilon}_R|^2 \right) + g_S^2 \left(|\epsilon_S|^2 + |\widetilde{\epsilon}_S|^2 \right)$

 $\xi_{\beta}b_{\beta} = q_V q_S 2 \operatorname{Re}\left[(\widehat{\epsilon}_L + \epsilon_R)\epsilon_S + (\widetilde{\epsilon}_L + \widetilde{\epsilon}_R)(\widetilde{\epsilon}_S)^*\right]$

$$\begin{split} \xi_N &= g_V \left(|0_{e4} + \epsilon_L + \epsilon_R| + |\epsilon_L + \epsilon_R| \right) + |g_S | |(s_L + |\epsilon_R|) + |\epsilon_S| \right) \\ &+ 3g_A^2 \left(|U_{e4} + \epsilon_L - \epsilon_R|^2 + |\tilde{\epsilon}_L - \tilde{\epsilon}_R|^2 \right) + 48g_T^2 \left(|\epsilon_T|^2 + |\tilde{\epsilon}_T|^2 \right) , \\ \xi_N b_N &= g_V g_S 2 \operatorname{Re} \left[(U_{e4} + \epsilon_L + \epsilon_R) (\epsilon_S)^* + (\tilde{\epsilon}_L + \tilde{\epsilon}_R) (\tilde{\epsilon}_S)^* \right] \\ &- 3g_A g_T 8 \operatorname{Re} \left[(U_{e4} + \epsilon_L - \epsilon_R) (e_T)^* - (\tilde{\epsilon}_L - \tilde{\epsilon}_R) (\tilde{\epsilon}_T)^* \right] , \\ \xi_N b_N' &= g_V g_S 2 \operatorname{Re} \left[(U_{e4} + \epsilon_L + \epsilon_R) (\tilde{\epsilon}_S)^* + \epsilon_S (\tilde{\epsilon}_L + \tilde{\epsilon}_R)^* \right] \\ &- 3g_A g_T 8 \operatorname{Re} \left[(U_{e4} + \epsilon_L - \epsilon_R) (\tilde{\epsilon}_T)^* - (\tilde{\epsilon}_L - \tilde{\epsilon}_R) (\epsilon_T)^* \right] , \\ \xi_N c_N &= 2 \operatorname{Re} \left[g_V^{-1} (U_{e4} + \epsilon_L + \epsilon_R) (\tilde{\epsilon}_L + \tilde{\epsilon}_R)^* + g_S^2 \epsilon_S (\tilde{\epsilon}_S)^* \right] \\ &+ 2 \operatorname{Re} \left[-3g_A^2 (U_{e4} + \epsilon_L - \epsilon_R) (\tilde{\epsilon}_L - \tilde{\epsilon}_R)^* + 48g_T^2 \epsilon_T (\tilde{\epsilon}_T)^* \right] . \end{split}$$

- Draw conclusions from sensitivity on $\frac{\xi_N}{\xi_{\beta}}$ to sensitivity on ϵ -parameters.
- Most sensitive to ϵ_T at $O(10^{-2})$
- Constraints for similar parameters from other experiments (LHC, neutron decay) at O(10⁻³)

10.1016/j.ppnp.2018.08.002, 10.1002/andp.201300072

4/7

Sep 14th, 2023

Preliminary Study on first year MC at 95 % CL

Preliminary Study on first year MC GNI model at 95% C.L. •••• 3 + 1v model at 95% C.L. 10³ preliminai Δm²₄₁ (eV²) 10^{1} 100 10^{-2} 10^{-1} $sin^{2}(\theta)$

- Able to probe sterile parameter space with GNI model using $\xi_N = \tan^2 \theta \cdot (g_A^2 + 3g_V^2)$.
- Cross-check between GNI and 3 + 1 v model → shows good agreement

- Sensitivity is dominated by statistics.
 - \rightarrow Further improvement by adding more data.

Institute for Astroparticle Physics

Effect of GNI parameters on β -spectrum

 b'_N enhances/diminishes kink-like structure of right-handed neutrino spectrum.

