

Solar neutrinos in liquid scintillator detectors: Borexino CNO measurement and JUNO sensitivity Luca Pelicci^{1,2}, Livia Ludhova^{1,2}, Marco Malabarba^{2,3}, Apeksha Singhal^{1,2}

- 1 Institut für Kernphysik, Forschungszentrum Jülich, Germany
- 2 RWTH Aachen University Physics Institute III B, Aachen, Germany
- 3 GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

Mitglied der Helmholtz-Gemeinschaft

MATTER AND UNIVERSE 2023 - 14.09.2023

• Solar neutrinos and importance of the CNO cycle

• CNO measurement with the Borexino detector

with the JUNO detector

Mitglied der Helmholtz-Gemeinschaft

Intermediate energy solar neutrinos sensitivity

SOLAR NEUTRINOS

Sun is powered by two sequences of thermonuclear reactions:

SOLAR NEUTRINOS

Net reaction: $4p \rightarrow 4He + 2e^+ + 2\nu_e$ $Q \approx 26.7 MeV$

Mitglied der Helmholtz-Gemeinschaft

Sun is powered by two sequences of thermonuclear reactions:

The importance of CNO neutrinos

- **Proof of principle of star energy production** Ş in the Sun via Carbon - Nitrogen - Oxygen (CNO) cycle
- CNO cycle is expected to be dominant for stars with $M \ge 1.3 M_{\odot}$
- Sensitive to Sun's core metallicity problem

_meV

BOREXINO DETECTOR

Mitglied der Helmholtz-Gemeinschaft

Location: Laboratori Nazionali del Gran Sasso (LNGS), Italy

Scintillator ~278 tons of PC+PPO

Detection channel: neutrino-

electron elastic scattering

Sunique features:

- **Constant of the set of and a constant of the set of t**
- ✓ High eff. light yield (~500 p.e./MeV with 2000 PMTs)
- Low energy threshold
- ✓ Good energy (~6% at 1 MeV) and position resolution (~11 cm at 1 MeV)

DAQ timeline:

- **2007 Phase-I (2007 2010):** First observation of ${}^{7}Be-\nu$, pep- ν and ${}^{8}B-\nu$
- 2012 Phase-II (2012 2016): Comprehensive measurement of pp-chain (Nature 2014 and 2018)

2016 Phase-III (2016 - 2021):

- First direct experimental evidence of CNO neutrinos (Nature 2020)
- First Directional Measurement of sub-MeV
 Solar Neutrinos

CHALLENGES OF CNO MEASUREMENT

Most important backgrounds: ν (pep) and ²¹⁰Bi

Strong anti-correlation

Indipendent constraints:

- $\nu(pep) = 2.74 \pm 0.04 \text{ cpd/100t}$ (solar luminosity constraint + global analysis of solar data excluding Borexino Phase III);
- 210 Bi constraint is the main challenge of the analysis.

Mitglied der Helmholtz-Gemeinschaft

Temperature gradients inside the detector

Thermal insulation of the detector:

Secular equilibrium is broken: $R(^{210}Po) \ge R(^{210}Bi)$

²¹⁰Po Rate [cpd/100t] in Cubes

SPECTRAL FIT

Mitglied der Helmholtz-Gemeinschaft

Multivariate spectral fit: interaction rates are obtained by maximizing a binned likelihood function

 $\mathscr{L}_{MV} = \mathscr{L}_{E}^{Tag} \cdot \mathscr{L}_{E}^{Sub} \cdot \mathscr{L}_{R} \cdot \mathscr{L}_{pep} \cdot \mathscr{L}_{^{210}Bi}$

SPECTRAL FIT

Mitglied der Helmholtz-Gemeinschaft

Multivariate spectral fit: interaction rates are obtained by maximizing a binned likelihood function

S. Appel et al. (Borexino Collaboration), Physical Review Letters. 129, 252701 (2022).

SPECTRAL FIT

Mitglied der Helmholtz-Gemeinschaft

Multivariate spectral fit: interaction rates are obtained by

Physical Review Letters. 129, 252701 (2022).

CORRELATED INTEGRATED DIRECTIONALITY (CID)

Newly developed method by Borexino:

Exploit fast Cherenkov light emission for statistical separation of solar neutrinos and background

Neutrino Event:

Čerenkov light correlated to position of the Sun (non flat $\cos \alpha$)

First Directional Measurement of sub-MeV Solar Neutrinos with Borexino, Phys. Rev. Lett. 128 (2022) 091803.

Correlated and Integrated Directionality for sub-MeV solar neutrinos in Borexino, Phys. Rev. D 105 (2022) 052002.

CORRELATED INTEGRATED DIRECTIONALITY (CID)

Newly developed method by Borexino:

Exploit fast Cherenkov light emission for statistical separation of solar neutrinos and background

Neutrino Event: Čerenkov light correlated to position of the Sun (non flat $\cos \alpha$)

First Directional Measurement of sub-MeV Solar Neutrinos with Borexino, Phys. Rev. Lett. 128 (2022) 091803.

Correlated and Integrated Directionality for sub-MeV solar neutrinos in Borexino, Phys. Rev. D 105 (2022) 052002.

CORRELATED INTEGRATED DIRECTIONALITY (CID)

FINAL CNO RESULTS

Final Results of Borexino on CNO solar neutrinos, arXiv:2307.14636 [hep-ex]

Independent measurement of the number of solar neutrino events can be used an external **constraint** in the multivariate spectral fit

Combine the multivariate fitting routine with new CID measurement on CNO+pep solar neutrinos:

13

Mitglied der Helmholtz-Gemeinschaft

Borexino R(CNO) results:

First detection (2020):

Improved measurement (2022):

Combined analysis (2023):

 $R(CNO) = 7.2^{+3.0}_{-1.7} \text{ cpd/100t}$ $R(CNO) = 6.7^{+2.0}_{-0.8} \text{ cpd/100t}$ $R(CNO) = 6.7^{+1.2}_{-0.8} \text{ cpd/100t}$

Most precise on CNO measurement so far

(Significance to no-CNO hypothesys > 8σ)

Solar implications: Optimization of C+N abundance in the Sun using neutrinos (~ 2σ tension with SSM-LZ)

Frequentist hypothesis test based on a likelihood-ratio test statistics including only Borexino results

(SSM-LZ disfavoured at ~3.2 σ)

Solar neutrinos and importance of CNO cycle

• CNO measurement with Borexino detector

Intermediate energy solar neutrinos sensitivity with JUNO detector

Mitglied der Helmholtz-Gemeinschaft

THE JUNO DETECTOR

Construction (China) to be completed by the end of 2023

simultaneously fitting TFC subtracted and tagged energy spectra

SENSITIVITY STUDIES

IDINO has the potential to reach and surpass current best precision for intermediate energy solar neutrino measurements

 $(^{13}N - \nu \text{ and } ^{15}O - \nu)$

Mitg Onoing work to include CID method for CNO precise measurement...

In all radiopurity scenarios (except IBD), JUNO has the potential to detect for the first time single CNO components

SUMMARY AND CONCLUSIONS

- **Solar neutrinos** are a crucial ingredient for a complete understanding of the reactions taking place in the Sun.
- Over more than 10 years of data taking, Borexino has performed a complete spectroscopy of solar neutrinos (pp-chain and CNO cycle).
- Directionality measurement, using the Correlated Integrated Directionality (CID) method for solar neutrinos:
 - Independet CNO measurement: R(CNC
 - Spectral fit result: R(CNO) = $6.7^{+2.0}_{-0.8}$ cpd/100t.
 - Combined analysis leads to unprecendented precision: $R(CNO) = 6.7^{+1.2}_{-0.8}$ cpd/100t.
- Sensitivity studies confirm the outstanding JUNO performances for solar- ν **spectroscopy** (⁷Be- ν , pep- ν , CNO- ν), depending on radiopurity scenarios:
 - expected uncertainty on 7Be, pep and CNO neutrinos will significantly improve with respect to the current best results

 13 N- ν and 15 O- ν can be detected separately for the first time 18

D) =
$$7.2^{+2.8}_{-2.7}$$
 cpd/100t.

Mitgl

THANK YOU FOR YOUR ATTENTION!

Mitglied der Helmholtz-Gemeinschaft

SOLAR PHYSICS: THE SOLAR METALLICITY PUZZLE

metal-to-hydrogen ratio (Z/X).

Can be inferred from spectroscopic measurements of the photosphere.

Solar neutrino fluxes depends on the metallicity input in SSM:

Flux	BGS98 (HZ) [cm ⁻² s ⁻¹]	AGSS09 (LZ) [cm
pp	$5.98(1\pm0.006)\cdot10^{10}$	$ig 6.03(1\pm 0.005)\cdot 1$
pep	$1.44(1 \pm 0.01) \cdot 10^{8}$	$1.46(1\pm0.009)\cdot1$
$^{7}\mathrm{Be}$	$4.93(1\pm0.006)\cdot10^{10}$	$4.50(1 \pm 0.06) \cdot 10$
^{8}B	$5.45(1\pm0.12)\cdot10^{6}$	$4.50(1\pm0.12)\cdot1$
^{13}N	$ $ 2.78 $(1 \pm 0.15) \cdot 10^{8}$	$ $ 2.04 $(1 \pm 0.14) \cdot 1$
$^{15}\mathrm{O}$	$2.05(1 \pm 0.17) \cdot 10^8$	$1.44(1 \pm 0.16) \cdot 1$
$^{17}\mathrm{F}$	$5.29(1 \pm 0.20) \cdot 10^{6}$	$3.26(1 \pm 0.18) \cdot 1$
All CNO	$4.88(1 \pm 0.16) \cdot 10^8$	$3.51(1 \pm 0.15) \cdot 1$

- **Metallicity**: abundance of elements with Z > 2 in the Sun (wrt Hydrogen), quantified with

⁷Be, ⁸B, and CNO neutrinos are the best candidates to unravel the metallicity puzzle JÜLICH

- Signal: CNO solar neutrinos
- Backgrounds:
 - Internal backgrounds: ²¹⁰Bi, ²¹⁰Po, ⁸⁵Kr

• pp-chain Solar neutrinos: $pep - \nu$ and $^7Be - \nu$

• External backgrounds: γ 's produced from ²⁰⁸TI, ²¹⁴Bi and ⁴⁰K nuclei (mainly from the stainless steel sphere and PMTs) • Cosmogenic backgrounds: mainly ¹¹C produced by cosmic muons spallations, identified via three fold coincidence (TFC)

> Data-set divided in two samples: TFC-tagged (enriched in ${}^{11}C$) and **TFC-subtracted** (depleted in ${}^{11}C$)

THE LOW POLONIUM FIELD

In this condition, the challenge is to find a region inside the FV where the additional ²¹⁰Po contribution is minimum:

Cross-checked with fluid dynamic simulations Mitglied der Helmholtz-Gemeinschaft

- ²¹⁰Po minimum is determined with **two methods**:
 - 1) fitting LPoF with a 2D paraboloidal function:

$$\frac{d^2 R(^{210} Po)}{d(\rho^2) dz} = [R(^{210} Po)\epsilon_E \epsilon_M LP + R_\beta] \times \left(1 + \frac{\rho^2}{a^2} + \frac{(z - z_0)^2}{b^2}\right)$$

- Fit performed in data bins of one month: extract z_0 position vs time
- Sum up the time bins, alignin distributions wrt z_0
 - Aligned dataset: blindly align data according to z₀ from previous month to minimize possible biases

THE LOW POLONIUM FIELD

In this condition, the challenge is to find a region inside the FV where the additional ²¹⁰Po contribution is minimum:

Cross-checked with fluid dynamic simulations Mitglied der Helmholtz-Gemeinschaft

Mit

²¹⁰Po minimum is determined with **two methods**:

2) fitting LPoF with splines (cubic functions defined by *knots*) along z:

In this condition, the challenge is to find a region inside the FV where the additional ²¹⁰Po contribution is minimum:

Low Polonium Field (LPOF):

20 tons above the equator $(z_{center} \sim 80 \text{ cm})$ Cross-checked with fluid dynamic simulations Mitglied der Helmholtz-Gemeinschaft

The two methods give consistent results:

Quantiles approach for CNO confidence interval

Procedure: quantiles of the CNO likelihood profile assuming Wilks approximation (same as 2020 CNO Nature paper)

Central value \rightarrow mode value: maximum of CNO rate likelihood / minimum of CNO rate $\Delta \chi^2$

C.I. \rightarrow calculating quantile of CNO density probability starting from the tail, separately for the left side and from the right side.

- 1σ C.I. left boundary: Rate RL such as area from 0 to RL is (1-0.68)/2 ~ 0.16
- 1σ C.I. right boundary: Rate RR such as area from RR to
 ∞ is (1-0.68)/2 ~ 0.16

SOLAR IMPLICATIONS: GLOBAL ANALYSIS

Results of global analysis fits in Φ_B , Φ_{Be} , and Φ_{CNO} planes

Mitglied der Helmholtz-Gemeinschaft

Test compatibility of solar ν data with SSM B16 predictions:

- Global analysis of all solar neutrino + Kamland reactor $\overline{\nu}_{\rho}$
- Borexino only + Kamland reactor $\overline{\nu}_{\rho}$
- **SSM B16 predictions using HZ inputs (GS98)**
- SSM B16 predictions using LZ inputs (AGSS09met)

Agreement with SSM-HZ predictions. Small tension (adding CNO results) with SSM-LZ

SOLAR IMPLICATIONS: HZ VS LZ TENSION

Frequentist hypothesis test based on a likelihood-ratio test statistics for SSM-LZ (null hypothesis H_0) and SSM-HZ (alternative hypothesis H_1)

Test statistics t is built using only ${}^{8}B$, ${}^{7}Be$, and CNO Borexino's results:

$$t = -2\log[\mathscr{L}(HZ)/\mathscr{L}(LZ)] = \chi^2(HZ) - \chi^2(H$$

Model and experimental uncertainties included

Assuming SSM-HZ, Borexino results (⁷Be, ⁸B and CNO) disfavour SSM-LZ at ~3.1 σ .

SOLAR IMPLICATIONS: C+N ABUNNDANCE

 Φ_R as thermometer

$$\frac{\Phi_O/\Phi_O^{SSM}}{(\Phi_B/\Phi_B^{SSM})^k} \propto \frac{n_{CN}}{n_{CN}^{SSM}} \cdot \left(\frac{T_C}{T_C^{SSM}}\right)^{\tau_O - k\tau_B}$$

k to minimize impact of T_C $k = \tau_O / \tau_B \approx 0.83$

SOLAR IMPLICATIONS: C+N ABUNNDANCE

SOLAR IMPLICATIONS: C+N ABUNNDANCE

Mitgliea aer neimnoitz-Gemeinschaft

With $(\Phi_B / \Phi_B^{SSM}) = 0.96 \pm 0.03$ from global analysis and $(\Phi_O / \Phi_O^{SSM}) = 1.35^{+0.41}_{-0.18}$ from CNO measurement

First determination of C+N abundance in the Sun using neutrinos Can be directly compared with measurements from solar photosphere

Agreement with SSM-HZ predictions. Moderate $\sim 2\sigma$ tension with SSM-LZ

8

Error budget on N_CN

Mitglied der Helmholtz-Gemeinschaft

Scintillation and Cherenkov detected photons (hits) are indistinguishable on an eventby-event basis:

CID method: nuisance parameters

 $[V_g(\check{Cer}) - V_g(scint)]_{data} \neq [V_g(\check{Cer}) - V_g(scint)]_{MC}$ To tune this difference introduce gvc 1) Group velocity of Cherenkov photons, relative to scintillation, at MC level: $\mathbf{t}_{corrected} = \mathbf{t}_{MC} - \mathbf{gv}_{ch}\mathbf{d}_{MC}$

Calibrate value of gv_{ch}, such that: $[v_g(\check{C}er) - v_g(scint)]_{data} = [v_g(\check{C}er) + 1/gv_{ch} - v_g(scint)]_{MC}$

Can be calibrated: 7Be shoulder ROI

constrained nuisance parameter in CNO analysis

2) Small bias in position reconstruction in direction of the solar neutrino Δr due to Cherenkov hits

Cannot be calibrated: no dedicated e- Cherenkov calibration source

→ free nuisance parameter in CNO analysis

Forschungszehtrum

CID method: nuisance parameters

1) Group velocity of Cherenkov photons, relative to scintillation, at MC level: $t_{corrected} = t_{MC} - gv_{ch}d_{MC}$

Can be calibrated: 7Be shoulder ROI -

constrained nuisance parameter in CNO analysis

CID method: nuisance parameters, gv_{ch} calibration

How to extract gv_{ch} ? 7Be shoulder ROI (0.5 MeV $\leq T_a \leq 0.8$ MeV), rich in neutrinos

 $\chi^2_{\rm gv_{ch}}(N_{\nu}, {\rm gv}_{\rm ch}, \Delta r_{\rm dir}) =$

- M_i^n , D_i^n : MC and data in cos α distrib. for i-th bin and n-th hits $= \sum_{n=1}^{N^{\text{th}}-\text{hit}(\max)} \sum_{i=1}^{I} \left(\frac{\left(N \cdot M_i^n - D_i^n\right)^2}{N \cdot M_i^n + N^2 \cdot M_i^n} \right) - 2\ln\left(P(N_v)\right) \qquad \Rightarrow v \text{ contribution to } M_i^n \text{ explicitly depends on } gv_{ch}, N_v \Delta r_{dir} \\ - N_v \text{ constrained by SSM} \\ - \Delta r \text{ free to vary}$ - Δr_{dir} free to vary

Forschungszentrum

$$\Delta r_{\rm dir} = (\vec{r}_{\rm rec} - \vec{r}_{\rm true}) \cdot d_{\rm true}$$

- Position reconstruction is based on PMT hit times, using likelihood fit Early hit PMTs tend to pull reconstructed position towards them Čerenkov hits are earlier than scintillation hits:
- \rightarrow Small bias in position reconstruction towards the true e⁻ direction
- Only visible for large sum of events. $\sim 2 \, \text{cm}$ over $\sim 10 \, \text{cm}$ position resolution • Free nuisance parameter in the $\cos \alpha$ fit, as Δr_{dir} cannot be calibrated

$\cos \alpha$ fit in CNO ROI

 gv_{ch} calibration **unlocks** the CID analysis on the whole Borexino dataset and without 210Bi constraint Events $\cos \alpha$ distribution in the CNO ROI \rightarrow obtain number of v ($N_v = N_{cNO} + N_{pep} + N_{8B}$) and background events

Earliest 4 hits: direct Cherenkov information (peak for neutrinos at $\cos \alpha \sim 0.75$)

N13

015

