## Searching for the missing duo: coincident gravitational-waves and high-energy neutrinos

#### Doğa Veske





# Common sources of gravitational waves (GW) and high energy neutrinos (HEN)

•Need a changing quadrupole moment for GW emission

- Binary orbiting systems, non-symmetric ejecta
- •Need an energetic flow of matter, for high energy neutrinos
  - i.e. from decay of photo-mesons created in AGN jets or GRBs
- •Most probable (proposed) GW-HEN sources are
  - Binary neutron stars (a potential kilonova)
  - Binary neutron star-black holes
  - Binary black holes with an accretion disc
  - Core collapse supernova

•



#### Gravitational-wave detector network



- •Detectors with different sensitivities
- •Detections so far are from LIGO and Virgo detectors
- •A network of detectors is important for sensitivity and <u>localization</u>

 $\nu_{\mu}(\bar{\nu}_{\mu}) + N \rightarrow \mu^{-}(\mu^{+}) + X$ 

$$\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$$

#### IceCube

- •High energy neutrino detector located at the geographical South Pole
- •Consists of "digital optical modules" which see the Cherenkov radiation from the muons created by neutrinos/from scattered particles
- •We use muon tracks which have better localization compared to cascade events
- •All sky but higher sensitivity for upgoing muons (coming from North Hemisphere)



Image from Measurement of South Pole ice transparency with the IceCube LED calibration system - IceCube Collaboration (Aartsen, M.G. et al.) Nucl.Instrum.Meth. A711 (2013) 73-89

Search for joint gravitational-wave and high energy neutrino events

- Learn more about the processes before, during and after the event
- •Guide astronomers in low latency with better localization
  - GW skymaps can range  $\sim 10 10^4 \, deg^2$
  - High energy neutrino localization  ${\sim}0.1-10\,deg^2$
  - Even smaller overlap with GW and HEN for astronomy follow-up



Swift follow-up for the neutrino coincident with S190728q. Keivani et. al. ApJ 2021

## Realtime search during O3 with IceCube

•Combined run of 2 LIGO detectors and Virgo detector

• 1 year planned run, suspended 1 month before completion

- •Performed a low-latency search after each open public alert (OPA) from GraceDB. Alerted the community through GCNs.
  - Total of 56 non-retracted alerts
- •3 events with <1% p-value
  - S190728q (BBH)
  - S191216ap (BBH)
  - S200213t (BNS)

•Released neutrinos triggered searches from different observatories including HAWC, Swift...

| TITLE:                                                    | GCN CIRCULAR                                                                                  |  |  |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| NUMBER:                                                   | 25210                                                                                         |  |  |  |
| SUBJECT:                                                  | LIGO/Virgo S190728q: Third update on neutrino search with IceCube                             |  |  |  |
| DATE:                                                     | 19/07/28 22:28:20 GMT                                                                         |  |  |  |
| FROM:                                                     | Raamis Hussain at IceCube <raamis.hussain@icecube.wisc.edu></raamis.hussain@icecube.wisc.edu> |  |  |  |
|                                                           | -                                                                                             |  |  |  |
| TreCube Collaboration (http://icecube wisc edu/) reports: |                                                                                               |  |  |  |

This is an update of GCN 25197 including updated p-values for the map

Properties of the coincident events are shown below.

circulated in the 5-Update GCN notice.

| dt ra (deg) <br>(bayesian) p-va | dec (deg)<br>alue(gener: | Angular Uncertainty(deg)<br>ic transient) | p-value |       |
|---------------------------------|--------------------------|-------------------------------------------|---------|-------|
| -360 312.87                     | 5.85                     | 4.81                                      | 0.010   | 0.016 |

### Case study: S191216ap



- •A "close" BBH merger ~376 Mpc
- •One significant neutrino
- •p-value ~0.6% in LLAMA search
- •p-value ~10% in the UML search



Swift follow-up for the neutrino coincident with S191216ap. Keivani et. al. ApJ 2021

DOĞA VESKE

## Case study: S191216ap



with S191216ap. Keivani et. al. ApJ 2021

DOĞA VESKE

## Case study: S191216ap



with S191216ap. Keivani et. al. ApJ 2021

## Offline searches

#### •01-02

- Analyzed 10 BBH and 1 BNS merger from LIGO-Virgo's first gravitational wave transients catalog GWTC-1
- Aartsen et al., ApJL 898 L10 (2020)
- No significant neutrino counterpart is found with the most significant having p-value 16%.

#### •03

- GWTC 2.1, GWTC 3 -> +80 events
- Abbasi et al., ApJ 944 80 (2023)
- Lowest p-value is 0.48%, not significant considering the total number of events





#### Latest: O4 real-time run

- Since end of May 2023
- Only 2 LIGO detectors so far
- LLAMA search runs on "low-significance" triggers as well

| Updated<br>2023-05-16 | <b>—</b> 01 | <b>—</b> O2 | <b>—</b> O3    | <b>—</b> O4                | <b>O</b> 5     |
|-----------------------|-------------|-------------|----------------|----------------------------|----------------|
| LIGO                  | 80<br>Mpc   | 100<br>Мрс  | 100-140<br>Мрс | 160-190<br>Мрс             | 240-325<br>Мрс |
| Virgo                 |             | 30<br>Мрс   | 40-50<br>Мрс   | 70-100<br>Мрс              | 150-260<br>Мрс |
| KAGRA                 |             |             | 0.7<br>Mpc     | 1-3 ≃10 ≳10<br>Мрс Мрс Мрс | 25-128<br>Мрс  |
| G2002127-v19 2        | 015 2016    | 2017 2018 2 | 019 2020 2021  | 2022 2023 2024 2025 2026 2 | 2027 2028 2029 |

#### GCN Circular 34646

| Subject      | LIGO/Virgo/KAGRA S230908b: one counterpart neutrino candidate from IceCube neutrino searches |
|--------------|----------------------------------------------------------------------------------------------|
| Date         | 2023-09-09T20:18:10Z (3 days ago)                                                            |
| From         | acz2122@columbia.edu                                                                         |
| Submitted By | Web form                                                                                     |
|              |                                                                                              |

The IceCube Collaboration (http://icecube.wisc.edu/) reports:

Properties of the coincident event(s) are shown below.

| dt(s) | RA(deg) | Dec(deg) | Angular uncertainty(deg) | p-value(generic transient) | p-value(Bayesian) |
|-------|---------|----------|--------------------------|----------------------------|-------------------|
|       |         |          |                          |                            |                   |

| +144.76 | 186.17 | +29.37 | 1.082 | not applicable | 0.0056 |
|---------|--------|--------|-------|----------------|--------|
|---------|--------|--------|-------|----------------|--------|

## Concluding remarks

- •Searching for common sources of gravitational-waves and high energy neutrinos
- No decisive discovery yet
- •Guiding astronomers with real-time follow-ups

