Dark Matter (and more) with DARWIN / XLZD

Marc Schumann University of Freiburg Helmholtz MU Days, KIT 15.09.2023 www.app.uni-freiburg.de

Bundesministeriun

für Bildung und Forschung

universität freiburg

The indirect evidence for the existence of dark matter is a clear indication for physics beyond the Standard Model

We are here ... "We" are here ... moving through the Dark Matter Halo

made of ???

Direct WIMP Search

Direct WIMP Search

Direct WIMP Search

Current Status: WIMPs

Dual Phase TPC

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

The ultimate LXe WIMP Detector

Background dominated by irreducible neutrinos

universitätfreiburg

10

Target Mass [t]

DARWIN

XENON + LZ + DARWIN =

- Future merger of DARWIN / XENON + LZ collaborations to build and operate the next-generation LXe observatory
 - \rightarrow new, stronger collaboration
 - \rightarrow depends on P5 recommendations (US)
- Now: paving the way with XLZD Consortium
 - → MoU 2021: 104 group leaders from 16 countries
 - \rightarrow joint whitepaper on science published
 - → joint workshops (2022 KIT, 2023 UCLA)
 - \rightarrow common WGs, regular SteCo meetings
 - \rightarrow preparing documents (detector, siting, etc)

DARWIN

DARWIN \LZD: Science Reach

200 t×y: probe entire mass range ≥10 GeV at 90% CL 1000 t×y: probe entire mass range ≥10 GeV at 3σ evidence universitätfreiburg M. Schumann – Dark Matter (and more) with DARWIN / XLZD

XLZD (60t+) +lower bg for 0νββ

What can we do with such an amazing Instrument?

nb: I often show results from "smaller" LXe detectors for illustration. In general, all channels that can be explored with smaller detectors can also be studied with larger instruments.

LXe Whitepaper

D. S. Akerib,^{2,3} D. Yu. Akimov,⁴ J. Akshat,¹ M. Alfonsi,⁵ S. J. Andaloro,⁶ E. Angelino,⁷ J. Angevaare,⁸ H. M. Araújo,⁹ S. Baek,¹⁰ D. Bajpai,¹¹ A. Bandyopadhyay,¹² L. Baudis,¹³ A. L. Baxter,¹ N. F. Bell,¹⁴ P. Bhattacharjee,¹⁵ F. Bishara,¹⁶ C. Blanco,¹⁷ C. Boehm,¹⁸ P. D. Bolton,¹⁹ A. I. Bolozdynya,⁴ B. Boxer,²⁰

⁹⁷ Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
 ⁹⁸ Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
 ⁹⁹ School of Physics, Beihang University, Beijing, 100083, P.R.China
 ¹⁰⁰ Technische Universität Dresden, 01069 Dresden, Germany

The nature of dark matter and properties of neutrinos are most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs) while featuring extensive sensitivity to many alternative dark matter candidates as well. The same detectors can study neutrinos through a variety of astrophysical sources and through neutrinoless double-beta decay. A next-generation xenon-based detector will therefore be a true multi-purpose machine to significantly advance particle physics, astrophysics, nuclear physics, and cosmology. This review article presents the science cases for such a detector.

Keywords: Dark Matter, Neutrinoless Double-Beta Decay, Neutrinos, Supernova, Direct Detection, Astroparticle Physics, Xenon

- [1075] A. Giuliani, J. J. Gomez Cadenas, S. Pascoli, E. Previtali, R. Saakyan, K. Schäffner, and S. Schönert (APPEC Committee) (2019), 1910.04688.
- [1076] T. Panesor, A Review of UK Astroparticle Physics Research (2015).
- [1077] N. Tyurin, PARTICLE PHYSICS IN RUSSIA (2012).
- [1078] T. Nakada et al., The European Strategy for Particle Physics Update 2013 (2013).
- [1079] C. Bai et al., Neutrinoless Double Beta Decay: A Study of Strategic Development by Chinese Academy of ences, in Chinese (2020).

universitätfreiburg M. Schumann – Dark Matter (and more) with DARWIN / XLZD

~600 authors

from DARWIN.

XENON, LZ

+ theory

~100 institutions

LXe Whitepaper J. Phys. G 50, 013001 (2023)

CONTENTS

I.	Introduction	6
	A. An Observatory for Rare Events	6
	B. Evidence for Dark Matter	6
	C. Dark Matter Direct Detection	6
	D. An Evolution of Scales	7
	E. The Liquid Xenon Time Projection	
	Chamber	8
	F. Xenon as a Detector Medium	9
п.	Dark Matter WIMPs	9
	A. Spin-Independent WIMPs	11
	B. Spin-Dependent Scattering	11
	C. Effective Field Theory	12
	1. Nonrelativistic Effective Field Theory	12
	2. Chiral Effective Field Theory	13
	3. WIMP-Pion Coupling	13
	4. Three-Flavor EFT and the UV	13
	D. Nuclear Structure Factors	14
	E. Inelastic Scattering	15
	F. Discriminating Between WIMP-Nucleus	
	Responses	15
	G. Scattering at High Momentum Transfer	16
	H. Simplified Models	16
	I. Electroweak Multiplet Dark Matter	17
	J. Implications for Supersymmetry	17
	K. Inelastic Dark Matter	18
	L. Self-Interacting Dark Matter	18
	M. Leptophilic Interactions	19
	N. Modulation Searches	19
	O. Confronting the Neutrino Fog	20

III. Broadening the Dark Matter Reach	21
A. Double Photoelectron Emission	21
B. Charge-Only Analysis	22
C. General Dark Matter-Induced Atomic	
Responses	22
D. Migdal Effect and Bremsstrahlung	24
E. Hydrogen Doping	24
F. Upscattered Dark Matter	24
G. Dark Matter Annihilation Products	25
H. Bosonic Super-WIMPs	25
1. Dark Photons	25
2. Axions and Axion-Like Particles	25
3. Solar Axions, Dark Matter, and Baryon	
Asymmetry	26
I. Luminous Dark Matter	26
J. Mirror Dark Matter	26
K. Magnetic Inelastic Dark Matter	26
L. Dark Matter around the Planck Mass	26
IV. Double Beta Processes	27
A. Neutrinoless Double Beta Decay of ¹³⁶ Xe	27
B. Double Electron Capture on ¹²⁴ Xe	28
C. Other Double-Beta Processes	29
V. Neutrinos for Astrophysics	29
A. Neutrino Interactions	29
1. Coherent Elastic Neutrino-Nucleus	
Scattering	30
2. Electroweak interaction	31
B. Solar Neutrinos	31

1. Boron-8 Solar Neutrinos (NR)	32	D. Intrinsic Background Mitigation
2. Hep Solar Neutrinos (NR)	32	E. Isolated Light and Charge Signals and
3. pp Solar Neutrinos (ER)	32	Accidental Coincidences
4. CNO Neutrinos (ER)	32	F. Monte-Carlo Simulation of Backgrounds
5. Neutrino Capture on Xenon-131 and		1. Background Model
Xenon-136	32	2. Generation of S1 and S2 Signals
C. Atmospheric Neutrinos (NR)	33	G. Discrimination
D. Supernova Neutrinos (NR)	33	
1. Galactic Supernova Neutrinos	33	VIII. Complementarity with Other Experimental
2. Pre-Supernova Neutrinos	34	Efforts
3. Supernova Early Warning System	34	A. Crossing Symmetry for Thermal Relic
4. Diffuse Supernova Neutrinos	34	Particles
E. Terrestrial Antineutrinos (ER)	35	B. Dark Matter at Colliders
F. Other Neutrino Physics	35	C. Indirect Dark Matter Searches
1. Measuring the Weinberg Angle	35	D. Measurements of Standard Model
2. Electron-Type Neutrino Survival		Parameters
Probability	35	E. Other Direct Dark Matter Searches
3. Searching for New Physics of Neutrinos	35	1. Solid State Detectors
		2. Liquid Target Detectors
VI. Additional Physics Channels	36	F. Neutrinoless Double Beta Decay
A. Solar Axions	36	Experiments
B. Neutrino Dipole Moments and Light		G. CEvNS Experiments
Mediators	36	H. Solar neutrino experiments
C. Fractionally Charged Particles	38	I. Gravitational Wave Searches
D. Nucleon Decay	38	J. Xenon in Medical Physics
E. Short-Baseline Oscillations	38	K. Liquid Xenon TPCs for Homeland
		Security
VII. Background Considerations	39	L. Data-Intensive and Computational
A. Underground Laboratories	39	Sciences
B. Fiducialization	40	
C. Material Selection	40	IX. Research Community Priority

Covers (probably) all science channels you can think of...

Spin-Dependent WIMP Couplings JCAP 10. 016 (2015)

Isotope ⁷Li

Abundance

92.6%

Spin

3/2

Unpaired Nucleon

Relative Strength

12.8

100.0

1.3

9.7

0.3

0.3

1.7

universität freiburg M. Schumann - Dark Matter (and more) with DARWIN / XLZD

coupling of WIMP to unpaired nucleon spins

Standard Analysis

Charge-Only Analysis

Charge-Only Analysis PRL 123, 251801 (2019)

Charge-Only Analysis

spin-independent WIMP-nucleon interactions 10^{-32} LUX (M) 10^{-34} 10^{-36} ENONITON EDELWEISS (Surf) Cross Section [cm²] 10⁻³⁸ NEWS-G CRESST-II DAMA/I DAMIC 10^{-40} DAMA/Na COSINE-100 **CDMSlite** arkSide-50 (S2 10⁻⁴² SuperCDMS DarkSide-DEAP-3600 **EDELWEISS** XENON1T 10^{-44} XENON100 10^{-46} 10^{-48} 10⁻⁵⁰ E 0.1 0.30.5 10 30 50 100 300 10^{4} 1 3 5 1000 3000 WIMP mass $[GeV/c^2]$ some results are missing...

WIMP-e⁻ Scattering

Very light DM scatters off electrons

Detectors with single-e⁻ sensitivity required \rightarrow LXe TPCs have it!

Planck-Scale Dark Matter

PRL 130, 261002 (2023)

- Some production mechanisms predict DM near Planck mass ~10¹⁹ GeV/c²
- Spin-independent cross section $\propto A^4$
- Expected flux: ~1 evt/(m² × yr) → flux limited
- Signal: multiple scattering → **Multiply-Interacting Massive Particle** (MIMP)

Almost there...

Supernova Neutrinos

Chakraborty et al., PRD 89, 013011 (2014) Lang et al., PRD 94, 103009 (2016)

- $\bullet\,\nu$ from supernovae could be detected via CNNS as well
- signal fom accretion phase of a ~18 Msun supernova
 @ 10 kpc is visible in a 10t-LXe detector (<DARWIN)
- signal: NRs plus precise time information
- challenge: theshold

universitätfreiburg M. Schumann – Dark Matter (and more) with DARWIN / XLZD

DARWIN

Interactions in LXe Detectors

Interactions in LXe Detectors

→ Many **science channels** are accessible

Solar Neutrinos

DARWIN

- DARWIN's low-E ER spectrum dominated by pp neutrinos (and 2ν ECEC+ $2\nu\beta\beta$)
- distinct features in ν spectra allow extracting neutrino fluxes
 - → full spectral fit of all components up to 3 MeV (possibility to enhance sensitivity by more sophisticated analysis)

pp-Neutrinos in real time

EPJ C 80, 1133 (2020)

universitätfreiburg M. Schumann – Dark Matter (and more) with DARWIN / XLZD

DARWIN

DARWIN ¹³⁶Xe: 0v double-beta Decay n n $dN/dE(E \: / \: Q_{\beta \: \beta})$ 136Cs 0+

• $0\nu\beta\beta$ candidate with $Q_{\beta\beta}=2.46$ MeV

Ονββ ν_м ×

2νββ

• 40t DARWIN LXe target contains 3.5t of ¹³⁶Xe without any enrichment!

0.8

¹ E/Q_{RB}

0.4

0.2

0.6

¹³⁶Хе

Q = 2457.83 keV

0⁺1

2⁺1

0+

¹³⁶Ba

γ 760.493 keV

^γ 818.497 keV

 $\Delta L \neq 0$

¹³⁶Xe: 0v double-beta Decay

EPJ C 80, 808 (2020)

ΔL ≠ **0**

DARWIN

• $0\nu\beta\beta$ candidate with $Q_{_{\beta\beta}}\text{=}2.46~\text{MeV}$

DARWIN Sensitivity

- optimize sensitivity by fiducialization
- background from decays of neutron-activated ¹³⁷Xe irrelevant at LNGS depth
- half-life sensitivity: 3.0 × 10²⁷ y (5t fiducial volume, 10y operation)

¹³⁶Xe: 0v double-beta Decay

An updated study for XLZD is currently under preparation

Low-E Electronic Recoils

PRL 129, 161805 (2022)

Annual Modulation Searches

Annual Modulation Searches

- dark matter-electron scattering
- 2-phase LXe TPCs operated stably over long periods XENON100: 4 years LUX: 2 years
- challenges DAMA/LIBRA
 XENON100: 5.7σ
 LUX: 9.2σ

New Physics in ER Data I

Many models predicts signatures from new physics in low-E ER data. Some examples

Solar Axions

- axions: solve strong CP problem and CDM candidate
- if axions exists, production in Sun with $E_{kin} \sim keV$ via
 - ABC: atomic recombination/deexcitation, Bremsstr., Compton i/a
 - **Primakoff** $\gamma \rightarrow a$ conversion
 - ⁵⁷Fe: 14.4 keV M1 nuclear transition
- normalization of spectra depends on axion coupling constants

New Physics in ER Data I

Many models predicts signatures from new physics in low-E ER data. Some examples

Solar Axions

- axions: solve strong CP problem and CDM candidate
- if axions exists, production in Sun with $E_{kin} \sim keV$ via
 - ABC: atomic recombination/deexcitation, Bremsstr., Compton i/a
 - **Primakoff** $\gamma \rightarrow a$ conversion
 - 57Fe: 14.4 keV M1 nuclear transition
- normalization of spectra depends on axion coupling constants

Enhanced Neutrino Magnetic Moment

- expect $\mu_{_{\rm V}} \sim 10^{_{-20}} \, \mu_{_{\rm B}}$ for massive neutrinos
- BSM physics could enhance μ_v ; if $\mu_v > 10^{-15} \mu_B \rightarrow$ neutrino is Majorana
- current limit $\mu_{\nu}{<}3{\times}10^{{-}11}~\mu_{B}^{}$ Borexino PRD 96, 091103 (2017)
- interaction cross-section increases with μ_v^2/E_v

New Physics in ER Data II

Many models predicts signatures from new physics in low-E ER data. Some examples

Bosonic Dark Matter

Axion-like Particles (ALPs, pseudoscalar DM)

- Interaction with electrons via axio-electric effect
 - \rightarrow ALPs are absorbed by bound electrons
 - \rightarrow absorption rate depends on axion-electron coupling g_{ae}
- expect mono-energetic peak at unknown m_a
- assume all DM is made of non-relativistic ALPs

Dark Photons (vector-boson DM)

- Massive, non-relativistic dark photons ionize Xe atoms
 - → signal strength given by kinetic mixing κ between dark photon and photon
- expect mono-energetic peak at unknown m_μ.
- assume all DM is made of non-relativistic dark photons

- No excess above background observed
 - \rightarrow XENON1T excess not from new physics
- For the first time, shape of low-E background spectrum dominated by second order weak decays (0vββ of ¹³⁶Xe, 2vECEC of ¹²⁴Xe)
- world-record low ER background level: (15.8±1.3) evts/(t×yr×keV)

Limits on New Physics

XENON

PRL 129, 161805 (2022)

→ new leading results for several new physics channels

Dark Matter (NR) WIMPs (SI, SD, EFT) low-mass NR S2-only, Migdal Planck-scale DM

Dark Matter (ER) WIMP-e scattering Annual Modulation ALPs Dark Photons

Neutrinos

CNNS supernova neutrinos solar neutrinos neutrino magn. moment

Rare nuclear decays 0vbb ¹³⁶Xe 0v / 2vECEC ¹²⁴Xe

Solar Axions

... and even more!

DARWIN/XLZD = A low background, low threshold **astroparticle physics observatory**