Speaker
Description
The standard approach of calculating the relic density of thermally produced dark matter based on the assumption of kinetic equilibrium is known to fail for forbidden dark matter models since only the high momentum tail of the dark matter phase space distribution function contributes significantly to dark matter annihilations. Furthermore, it is known that the computationally less expensive Fokker-Planck approximation for the collision term describing elastic scattering processes between non-relativistic dark matter particles and the Standard Model thermal bath breaks down if both scattering partners are close in mass. This, however, is the defining feature of the forbidden dark matter paradigm. We therefore present the effect of the full elastic collision term on the relic density for a simplified model featuring forbidden dark matter annihilations into muon or tau leptons through a scalar mediator. The overall phenomenological outcome is that the updated relic density calculation results in a significant reduction of the experimentally allowed parameter space compared to the traditional approach, which solves only for the abundance. In addition, almost the entire currently viable parameter space can be probed with CMB-S4, next-generation beam-dump experiments or at a future high-luminosity electron-position collider, except for the resonant region where the mediator corresponds to approximately twice the muon or tau mass.