
Introduction to Continous-X services at NHR@KIT

Holger Obermaier, Michele Mesiti | 30. May 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

1. Motivation

2. Continuous-X at NHR@KIT

3. GitLab: Examples and Exercises

2/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Table of Contents

What is the X in Continous-X (CX)
Continuous Integration
Continuous Testing
Continuous Benchmarking
Continuous Deployment

3/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Motivation

What can CX help you with?
gatekeeping/enforcing coding standard on contributions from others
parts of the development cycle that do not fit on the machine you use to develop code.

Typically...
Run all unit and integration tests
Measure test coverage
Check code style and practices (Linting)
Test compilation with different compilers and libraries (e.g., MPIs, CUDA/ROCm, …)
Test and benchmark on specific hardware ⇐
Automated deployment / packaging (for varying compilers, MPIs, hardware)
... all using standardized environments in conjunction with containers

4/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Motivation (continued)

1. Motivation

2. Continuous-X at NHR@KIT
Introduction
Runner Setup
CI levels in detail

3. GitLab: Examples and Exercises

5/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Continuous-X Service at NHR@KIT

Level Number
jobs/day Runner on

Self-
managed
Runner

Permanent
Runner

Full Hard-
ware
Access
(e.g.
GPUs)

Container
support

Jobs with
timing
con-
straints

1 Low Compute
Node     

2 Medium Dedicated Lo-
gin Node    

medium
workloads

3 High Dedicated
Hardware     

See: NHR@KIT User Documentation: Continuous Integration: Overview

6/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Continuous-X Service Levels at NHR@KIT

https://www.nhr.kit.edu/userdocs/ci/

The gitlab-runner application is used to:
register runnners for a GitLab instance or repository, with the register subcommand. Multiple
runner can be registered, for multiple GitLab servers and repositories, on the same machine.
launch all the registered runner for the user: this is done with the run subcommand. This command
will eventually run the pipeline.

The capability of each registered runner depends on:
The executor used by the runner (e.g., shell, docker, custom)
The host the runner lives on (e.g. a login node or a compute node), i.e., on which host the
gitlab-runner run command was called, or the CI level

7/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: Setting up a Runner

Example Repository

8/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: Settings: CI/CD: Runner

https://gitlab.com/michele.mesiti/cx-course

Login to dedicated CI node

ssh hk-ci-controller.scc.kit.edu

(bq0742@hk-ci-controller.scc.kit.edu) Your OTP: <OTP>
(bq0742@hk-ci-controller.scc.kit.edu) Password: <Password>
...
Last login: Mon Oct 25 16:15:10 2021 from 2a00:1398:4:1801::810d:3bc6
�[�]�[bq0742@hkn1993]�[Mon. 2021-11-08 15:07:19]
�[~] $

9/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Register a GitLab Runner on the HoreKa Cluster

Register and configure GitLab Runner

gitlab-runner register

Enter the GitLab instance URL: e.g. https://gitlab.com/
Enter the registration token: <Token from GitLab: Settings: CI/CD: Runners>
Enter a description for the runner: e.g. GitLab Runner at NHR@KIT
Enter an executor: shell

Configuration is written to ${HOME}/.gitlab-runner/config.toml
Execute GitLab Runner

gitlab-runner run

10/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Register a GitLab Runner on the HoreKa Cluster
(continued)

Executors types supported by the GitLab Runner:
Shell (simplest)
Custom (allows customization to our system, e.g. using containers and/or Slurm)
SSH
Docker
VirtualBox
…

11/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Register a GitLab Runner on the HoreKa Cluster
(continued)

Using Containers
NHR@KIT User Documentation: Using Containers
Custom executor instead of shell executor
No native Docker support (security constraints)
Enroot: Root-less execution of Docker images
Template folder: /usr/share/gitlab-runner/custom-executor-enroot
Template GitLab Runner config: config.toml
GitLab Runner config uses prepared scripts: config.sh, prepare.sh, run.sh, cleanup.sh
.gitlab-ci.yml uses keyword image to configure Docker image

12/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Register a GitLab Runner on the HoreKa Cluster
(Containers on Slurm)

https://www.nhr.kit.edu/userdocs/ci/containers/
https://github.com/NVIDIA/enroot

13/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab Settings: CI/CD: Runners

CI Level 1
GitLab Runner is executed by a batch job
GitLab Server is contacted by the runner, the batch job starts
Requires access from compute node to GitLab Server
GitLab Runner quits when all waiting CI jobs are executed
Problem: Start of the GitLab Runner job is unknown in advance
For repeating GitLab Runner jobs use scrontab (consider also scheduled pipelines)
⇒ Best suited for nightly builds and nightly integration tests

14/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 1 at NHR@KIT

https://docs.gitlab.com/ee/ci/pipelines/schedules.html

Prerequisite: Register a GitLab Runner on HoreKa Cluster
In CI Level 1 the GitLab Runner is executed as a batch job

sbatch \
--wrap="gitlab-runner run" \
--time="00:30:00" \
--partition="dev_cpuonly"

15/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 1 at NHR@KIT (continued)

Alternative method: Create a batch script for submission:

#!/usr/bin/bash
#SBATCH --partition dev_cpuonly
#SBATCH --time 00:30:00

Prepare your environment
module add compiler/intel mpi/impi numlib/mkl
module list

Start GitLab Runner
gitlab-runner run

16/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 1 at NHR@KIT (continued)

Use scrontab -e to set up regular GitLab Runner jobs:

#SCRON -p dev_accelerated
#SCRON -t 00:30:00
@midnight gitlab-runner run

Jobs are not guaranteed to execute at the preferred time!
Jobs are regularly queued in the batch system:

squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1503545 dev_accel gitlab-r bq0742 PD 0:00 1 (BeginTime)

17/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 1 at NHR@KIT (continued)

https://slurm.schedmd.com/scrontab.html

Prerequisite: Register a GitLab Runner on HoreKa Cluster
In CI Level 2 the GitLab Runner

is executed as systemd user service
runs on dedicated login node (e.g. hk-ci-controller.scc.kit.edu)

Limited / shared resources ⇒ Runtime variations
Only suited for medium workloads
No access to special hardware

is self-managed
Systemd management
CI jobs can start immediately

18/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 2 at NHR@KIT

Start GitLab Runner Service

systemctl --user start gitlab-runner.service

Get status of GitLab Runner Service

systemctl --user status gitlab-runner.service

� gitlab-runner.service - GitLab Runner for bq0742
Loaded: loaded (/etc/systemd/user/gitlab-runner.service; disabled; vendor

preset: enabled)↪→

Active: active (running) since Tue 2021-11-09 11:45:41 CET; 3s ago
Main PID: 1167130 (gitlab-runner)

CGroup:
/user.slice/user-8946.slice/user@8946.service/gitlab-runner.service↪→

��1167130

19/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 2 at NHR@KIT (continued)

Read log output of GitLab Runner Service

journalctl --user --unit gitlab-runner.service

WARNING: Running in user-mode.
WARNING: Use sudo for system-mode:
WARNING: $ sudo gitlab-runner...

Configuration loaded builds=0
listen_address not defined, metrics & debug endpoints disabled builds=0
[session_server].listen_address not defined, session endpoints disabled

builds=0↪→

20/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 2 at NHR@KIT (continued)

Stop GitLab Runner Service

systemctl --user stop gitlab-runner.service

21/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 2 at NHR@KIT (continued)

A Custom Executor has been developed for HoreKa and bwUniCluster 2.0 that can reside on the login
node (as for CI level 2) and launch jobs on the compute nodes via Slurm, while using Enroot or Singularity
(now Apptainer) for containers.

This helps to have the same performance reliability as CI level 1 but without having to manually start the
gitlab-runner, among other things.

Installation/Registration steps:
1 Download the code from the Materials on the Indico page of the workshop
2 Copy it on HoreKa/bwUniCluster 2.0 and extract the archive
3 To register a new runner, execute ./utils/gitlab-runner-register-wrapper.sh and follow the

instructions (launch it before with the --help option to see what is available)
(Soon step 1 and 2 should not be needed any more)

22/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 2 at NHR@KIT: A special executor

Dedicated hardware
For projects that

generate many CI jobs per day
need predictable runtimes and performance
require privileged access to special resources

Available platforms:
Intel: Broadwell, Cascade Lake, Ice Lake
NVIDIA: V100, A100
AMD: Rome, Milan, MI100
Fujitsu: ARM64FX

Get in contact with CI Operations Team

23/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

CI Level 3 at NHR@KIT

Options:
Run permanently on the login node, using a shell executor
Run permanently on the login node, using a custom executor that submits jobs automatically to a
compute node
Wrap ‘gitlab-runner run‘ in a time-limited slurm job (either manual launch or with scrontab,
possibly in conjunction with Scheduled Pipelines)

24/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Register a GitLab Runner on the HoreKa Cluster:
recap

https://docs.gitlab.com/ee/ci/pipelines/schedules.html

1. Motivation

2. Continuous-X at NHR@KIT
Introduction
Runner Setup
CI levels in detail

3. GitLab: Examples and Exercises

25/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: Examples and Exercises

GitLab CI/CD Documentation:
Get started with GitLab CI/CD
Keyword reference for the .gitlab-ci.yml file
GitLab CI templates

YAML-config file gitlab-ci.yml
GitLab offers integrated CI-editor with visualization and linting

26/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface

https://docs.gitlab.com/ee/ci/quick_start/
https://docs.gitlab.com/ee/ci/yaml/
https://gitlab.com/gitlab-org/gitlab-foss/tree/master/lib/gitlab/ci/templates

Each push triggers a new pipeline (unless skipped)
Each pipeline consist of stages

Predefined stages: .pre, build, test, deploy, .post
Stages run in sequence
Working tree is typically cleaned up between stages: Use artifacts to keep files

Each stage consist of jobs
Jobs in the same stage can run in parallel

If a job fails then the stage fails, and all subsequent stages are skipped
If a stage fails then the pipeline fails

27/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (continued)

https://docs.gitlab.com/ee/ci/pipelines/##skip-a-pipeline

Repository with examples and exercises
Tip: when trying the exercises, disable email notifications regarding pipeline events (click on the bell
icon in the main page of the repository and select “Disabled”)
For more examples: the official GitLab CI/CD template collection

Disclaimer
The selection of features listed here is based on my personal experience. It is only a selection: to have a
broader view of what is available, look at the templates and at the official documentation.

28/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Exercises and Examples

https://gitlab.com/michele.mesiti/cx-course
https://gitlab.com/gitlab-org/gitlab-foss/tree/master/lib/gitlab/ci/templates

A single-stage pipeline that compiles and run a C program.
1 “Fork” repository on a GitLab server
2 Configure runner for the cloned repository
3 Briefly consider the security aspects (what code is the runner going to run? Where? When?)
4 Trigger the pipeline on the main branch

29/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Exercise: A Basic Pipeline

A failing pipeline gives an important message about the status of our code, so it is important that when
there is a failure in the code we run (e.g., test cases or benchmarks)

1 Run the pipeline on the failure-01 branch. It fails: why? Is it expected?
2 Run the pipeline on the fail-failed-01 branch. It does not fail: why? Is this expected?
3 Run the pipeline on the fails-correctly-again branch. It fails: why? Is it expected? What was

changed?
How much code you write in your .gitlab-ci.yml and how much code should you write in bash scripts?

30/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Exercise: Failures

To customize the behaviour of the test code, GitLab offers a few ways to set environment variables with
different degrees of secrecy.
Checkout the environment-variables branch and follow the instruction in README.md.

31/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Exercise: Environment Variables

Artifacts are the main way to transfer information between jobs in a pipeline, and from the runner to the
GitLab web interface.

1 Checkout the artifacts branch
2 have a look at the .gitlab-ci.yml file
3 Try to run the pipeline. Does the behaviour depend on the executor type (e.g., docker vs shell)?

32/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Example: Artifacts

Don’t Repeat Yourself: reuse code in pipeline definition
1 Checkout branch templates
2 have a look at the .gitlab-ci.yml file, notice the use of .greet-base and of the extends: key
3 How can the base job be customized?

See also: yaml anchors

33/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Example: Pipeline code reuse with templates and
extends

https://docs.gitlab.com/ee/ci/yaml/yaml_optimization.html##anchors

1 Checkout branch include
2 have a look at the .gitlab-ci.yml file, and the use of include:
3 How can you include multiple files? How is the content merged?

34/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Example: Managing complexity with include:

It is possible to periodically mirror the content of a repository to and from another one.
Push mirror: the mirror is updated when a push to the repo is made (docs)
Pull mirror: the mirror is updated periodically (polling) (docs)

Note: Setting up a pull mirror on GitLab requires GitLab Premium (at the time of writing, this is
available on git.scc.kit.edu)

35/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab CI/CD: Exercise: Mirroring

https://docs.gitlab.com/ee/user/project/repository/mirror/push.html
https://docs.gitlab.com/ee/user/project/repository/mirror/pull.html

Depending on the GitLab tier available, it might be impossible to set up a pull mirror. As a workaround, it
is possible to use GitHub actions to push.

1 Create an empty repository on GitHub and push the example repo there (tip: disable notifications)
2 Create and empty repository on a GitLab server (tip: disable notifications)
3 Checkout the github-to-gitlab-mirror branch in the example repo
4 Follow the instructions in the README.md to set up the mirroring

36/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab CI/CD: Exercise: Mirroring from GitHub to
GitLab

The basic features of CI can be replicated without GitLab or GitHub, but just setting up a bare repository
and the relevant hooks.

1 Checkout branch hooks
2 Follow instructions in README.md

37/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Basic Git: Exercise: Git Hooks

GitLab can show the results: of a test suite in a more convenient way.

Coverage reports produced as static websites can also be uploaded on GitLab pages.

If the GitLab pages feature is not active, one can use third party services to host the coverage reports.

Example on gitlab.com
Exercise: fix the tests and reach 100% code coverage.

38/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab CI/CD: Test results and coverage

https://gitlab.com/michele.mesiti/testing-python/-/pipelines/882228639/test_report
https://testing-python-michele-mesiti-41e88bc4a5e5702e6730e61fb164ce68c.gitlab.io/
https://app.codecov.io/gl/michele.mesiti/testing-python/tree/main/
https://gitlab.com/michele.mesiti/testing-python

Create a job that launches the program hostname on 2 different nodes, using:
1 The shell executor (suggestion: either use srun, or prepare a shell script to launch with sbatch).
2 The custom executor (suggestion: use srun hostname in the job body, set the

COMMAND_OPTIONS_SBATCH variable appropriately).
(As examples or solutions, see here or here)

39/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

HPC: a MPI job in a pipeline

https://git.scc.kit.edu/hs2454/citest/-/blob/main/gitlab-ci/bwuc2-specific.yml
https://git.scc.kit.edu/hs2454/citest/-/blob/main/gitlab-ci/horeka-specific.yml

NVidia provides a container image for its HPC benchmarks.

The exercise: run the HPL benchmark on a GPU node on HoreKa.

It requires registering an account at ngc.nvidia.com, setting up authentication for Enroot, and registering
a runner for the repository of the exercise.

The exercise is described/sketched here.

40/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

HPC: Run the NVidia HPL benchmark as part of a CI
pipeline

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks
https://git.scc.kit.edu/hs2454/hpl-ci-test

A set of reference pictures (a substitute for the live demonstration)

41/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

Screenshot Gallery

42/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Set up CI/CD)

43/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (CI/CD Editor)

44/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Browse Templates)

45/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (CI/CD Templates)

stages:
- build
- test

build-hello-world-job:
stage: build
script: cc helloWorld.c -o helloWorld
artifacts:

paths:
- helloWorld
expire_in: 1 day

test-code-job1:
stage: test
script: if [[$(helloWorld) != "Hello World"]]; then exit 1; fi

46/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (.gitlab-ci.yml)

Test stage can use compute resources
...

test-code-job2:
stage: test
script:
- srun -p dev_cpuonly -t 20 -N 1 -n 76 CPU_Test.sh
- srun -p dev_accelerated -t 20 -N 1 -n 76 --gres=gpu:4 GPU_Test.sh

47/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (.gitlab-ci.yml)

48/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Edit)

49/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Visualize)

50/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Lint)

51/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (CI/CD: Pipelines)

52/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Pipeline passed)

53/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Build Job)

54/54 2023-05-30 H. Obermaier, M. Mesiti: CX services at NHR@KIT Steinbuch Centre for Computing (SCC)

GitLab: the CI/CD interface (Test Job)

	GitLab: Examples and Exercises
	Screenshot Gallery

