
Introduction to Performance Engineering on HPC

Holger Obermaier | 14. June 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

1. Optimization cycle

2. Tool Test Cases
3. Likwid Tools: Overview

4. Likwid Tools: likwid-topology

5. Likwid Tools: likwid-bench

6. Compiler Optimization Report

7. /usr/bin/time

8. Application Performance Snapshot (APS)

9. Likwid Tools: likwid-perfctr

10. Likwid Tools: likwid-perfctr Marker API

11. perf tools

12. Intel Trace Analyzer and Collector (ITAC)
13. References

2/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Current hardware challenges
Cooling / power restrictions
⇒ CPU frequency is limited
⇒ More cores

Die size restrictions
⇒ Number of logic circuits per die is limited
⇒ Multiple dies per CPU
⇒ Multiple communication networks between cores (on die, inter die)

Limited number of electrical connections between CPU and board
⇒ Limited number of memory channels, limited memory bandwidth
⇒ Multiple levels of caches
⇒ Multiple types of memory (Main memory, High bandwidth memory (HBM))

3/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Optimization cycle

Picture Intel [1]

4/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Optimization cycle (Intel Sapphire Rapids)

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

D5

“G” links

1DPC 1DPC

PCIe
Gen 5

(64 lanes)

 PCIe
Gen 3

(6 lanes)

“P” links

“G” links

1DPC 1DPC

PCIe
Gen 5

(64 lanes)

 PCIe
Gen 3

(6 lanes)

“P” links

6x D
DR5 6x

 D
DR

5

GM
I

GM
I

GM
I

GM
I

I/O Die

6x D
DR5 6x

 D
DR

5

32G
SERDES

32G
SERDES

Security
Processor

Bo
nu

s
SC

H
GM

I

GM
I

GM
I

GM
I∞ ∞

∞ ∞

6x D
DR5 6x

 D
DR

5

GM
I

GM
I

GM
I

GM
I

I/O Die

6x D
DR5 6x

 D
DR

5
32G

SERDES

32G
SERDES

Security
Processor

Bo
nu

s
SC

H
GM

I

GM
I

GM
I

GM
I∞ ∞

∞ ∞

Z4 Z4

Z4 Z4

Z4 Z4

Z4 Z4

Picture AMD [2]

5/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Optimization cycle (AMD Genoa)

Hardware implied software challenges
HPC software needs hardware awareness

Levels of parallelization (SIMD/Vector-Instructions, Threads, MPI tasks)
CPU to CPU locality
CPU to memory locality
Non Uniform Memory Access (NUMA)
Cache sizes and hierarchy
Memory types

⇒ Optimizing code gets more complex
⇒ Support by performance tools is needed

6/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Optimization cycle …

Iterative process
Collect hardware information
Collect performance data
Analyze hardware information and performance data

Where is most of the time spent?
What is the expected performance?
Are cores evenly utilized?
Is memory access local?
Does communication limit performance?

7/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Optimization cycle …

Iterative process (continued)
Fix problem

Appropriate data structure (e.g. Array of structs vs. struct of arrays)
Loop layout (allow compiler vectorization, CPU prefetching)
Blocking (Cache reuse)
Compiler and MPI command line options (e.g. process binding)

Repeat until effort is no longer worth expected improvement

This talk focuses on hardware information and performance data collection and analysis

8/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Optimization cycle …

Benchmark stream [2]
Copy c = a, a, c ∈ Rn

Scale b = αc, b, c ∈ Rn, α ∈ R
Add c = a + b, a, b, c ∈ Rn

Triad a = b + αc, a, b, c ∈ Rn, α ∈ R

O(n) memory operations, O(n) compute operations
⇒ Memory bandwidth bound

9/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Tool Test Cases

Benchmark dgemm [1]
Multiply C = A · B, A,B,C ∈ Rn×n

O(n2) memory operations, O(n3) compute operations
⇒ Floating point bound

Benchmark rank_league
Asynchronous point to point MPI communication
O(1) memory operations, O(1) compute operations

⇒ Communication bound

10/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Tool Test Cases

Collection of simple command line tools
Hardware information:
likwid-topology
Micro benchmarks:
likwid-bench
Pinning:
likwid-pin, likwid-mpirun
Performance counters:
likwid-perfctr

11/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Likwid Tools

https://github.com/RRZE-HPC/likwid/wiki/likwid-topology
https://github.com/RRZE-HPC/likwid/wiki/likwid-bench
https://github.com/RRZE-HPC/likwid/wiki/likwid-pin
https://github.com/RRZE-HPC/likwid/wiki/likwid-mpirun
https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr

CPU topology (hardware threads, cores, sockets)
Cache topology (location and size of caches)
Cache properties (cache line size, associativity)
NUMA topology (location and size of main memory)
Get knowledge on how to bind your tasks, pin your threads

Example
likwid-topology on Intel Xeon Ice Lake
likwid-topology cache topology on Intel Xeon Ice Lake

12/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Likwid Tools: likwid-topology

Preparation
Get familiar with likwid-topology. Use

-h to get help
-g to get a graphical output
-c to get cache information

Be aware that cluster HoreKa and bwUniCluster 2.0 have different hardware.
For the hands on examine the questions on the login node

Questions
How many hardware threads, cores, sockets are available?
How many cache levels are available?
Which sizes do they offer?
How many NUMA domains are available?

13/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

https://www.nhr.kit.edu/userdocs/horeka/hardware/
https://wiki.bwhpc.de/e/BwUniCluster2.0/Hardware_and_Architecture

What is the maximum
achievable memory bandwidth
achievable cache bandwidth
achievable computing power
Vector (AVX, AVX2, AVX-512) computing power
Fused multiply-add (FMA) computing power

Example
likwid-bench on Intel Xeon Ice Lake

14/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Likwid Tools: likwid-bench

Preparation
Start an interactive one node job
Get familiar with likwid-bench. Use

-h to get help
-a to list available micro benchmarks
-l to list properties of test
-p to list available thread domains

Use micro benchmarks stream_avx_fma and stream_mem_avx_fma to answer the questions

Questions
What memory bandwidth can be reached using only one thread?
What is the maximum achievable main memory bandwidth?
What about L1, L2 and L3 cache bandwidth?

15/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

Usage vectorization report
module add compiler/intel/2022
icc ${OPT_FLAGS} \

-qopt-report=5 \
-qopt-report-phase=vec \
-qopt-report-stdout \
${SOURCE} -o ${OUTFILE}

Example
Intel vectorization report: stream

16/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Compiler Vectorization Report (Intel Legacy)

Usage vectorization report
module add compiler/intel/2022.0.2_llvm
icx ${OPT_FLAGS} \

-qopt-report=max \
${SOURCE} -o ${OUTFILE}

Example
Intel vectorization report: stream

17/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Compiler Vectorization Report (Intel LLVM based)

Usage vectorization report
module add compiler/gnu
gcc ${OPT_FLAGS} \

-fopt-info-vec \
${SOURCE} -o ${OUTFILE}

Example
GCC vectorization report: stream

18/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Compiler Vectorization report (GCC)

Preparation
Change to folder HandsOn/Stream
Use script ./build.intel_vec_report.sh to generate Intel compiler vectorization report
Use script ./build.gnu_opt_report.sh to generate GCC compiler vectorization report

Questions
Were Intel and GNU compiler able to vectorize the loops in the functions tuned_STREAM_Copy,
tuned_STREAM_Scale, tuned_STREAM_Add and tuned_STREAM_Triad?
Why is the loop in tuned_STREAM_Scale (line 348) mentioned twice in the Intel vectorization report?
Why is no peel loop needed for the loop in tuned_STREAM_Scale (line 348)?

19/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

No recompilation needed
⇒ Use your existing binary
Uses kernel resource usage info
Report time consumption

time spent in user space
time spent in kernel space
elapsed time

Report memory consumption
maximum resident size
Page faults

Report IO operations

Example
Comparison stream serial/parallel execution with time

20/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

/usr/bin/time

Preparation
Change to folder HandsOn/Stream
Use script ./build.sh to build stream benchmark
Use sbatch jobscript.time.sh to submit batch job

Questions
What is the difference between the two stream benchmark runs in jobscript.time.sh?
Where can you see the difference in the output of /usr/bin/time?
What causes the high amount of system time?
Do memory consumption reported by stream benchmark and /usr/bin/time match?

21/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

No recompilation needed
⇒ Use your existing binary
But: Best compatibility with Intel compiler and MPI
Uses MPI library instrumentation
Quick insight into

MPI
OpenMP
Memory access
Floating point
IO usage

Text and HTML report

22/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Application Performance Snapshot (APS)

Usage serial or OpenMP binary
module add compiler/intel/2022
module add devel/vtune
aps ${BINARY}

Example
APS: stream

APS HTML report: stream

APS: dgemm

APS HTML report: dgemm

23/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Application Performance Snapshot (APS) (2)

Usage MPI binary
module add compiler/intel/2022 \

mpi/impi/2021.5.1
module add devel/vtune/2022
mpirun aps ${BINARY}

Example
APS: rank_league
APS HTML report: rank_league

APS Rank-to-rank communication matrix
HTML report: rank_league

24/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Application Performance Snapshot (3)

Preparation
Change to folder HandsOn/Stream
Use script ./build.sh to build stream benchmark
Use sbatch jobscript.aps.sh to submit batch job
Repeat these steps in folder HandsOn/Dgemm and HandsOn/Rank_league

Questions
What are the limiting factors for benchmark

stream?
dgemm?
rank_league?

25/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

Measures total program performance
No recompilation needed ⇒ Use your existing binary
Uses hardware performance counters
Uses sampling

Low overhead
Only statistical results

Performance groups simplify HW counters use
Important performance groups

FLOPS_AVX Packed AVX MFLOP/s
MEM Main memory bandwidth
UPI Traffic on the UPI (socket interconnect)

26/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Likwid Tools: likwid-perfctr

Usage
likwid -perfctr -a # Available performance groups
likwid -perfctr -H --group ${GROUP} # Group information
likwid -perfctr --group ${GROUP} -C ${CPU_LIST} ${BINARY} # Measure

Example
likwid-perfctr: Performance group MEM and UPI on benchmark stream

likwid-perfctr: Performance group FLOPS_AVX on benchmark dgemm

27/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Likwid Tools: likwid-perfctr (2)

Preparation
Get familiar with likwid-perfctr. Use

-h to get help
-a to list available performance groups
-H to get performance group help (e.g. for group NUMA)

Change to folder HandsOn/Stream
Use script ./build.sh to build stream benchmark
Use sbatch jobscript.perfctr.sh to submit batch job

Questions
What is the difference between the two stream benchmark runs in jobscript.perfctr.sh?
Where can you see the difference in the output of stream benchmark
Where can you see the difference in the output of likwid-perfctr?

28/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

Measure partial program performance
Add likwid marker API to source code. Recompile.
API macros:
likwid_markerInit Initialize likwid marker API
likwid_markerThreadInit Initialize each thread
likwid_markerStartRegion Start a measurement in named region
likwid_markerStopRegion Stop a measurement in named region
likwid_markerClose Close likwid marker API

Example
Likwid marker API: stream

Likwid marker API: dgemm

29/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Likwid Tools: likwid-perfctr Marker API

Preparation
Compare stream source code in folders HandsOn/Stream and HandsOn/Stream.likwid
Change to folder HandsOn/Stream.likwid
Use scripts ./build.gnu.sh and ./build.intel.sh to build stream benchmark
Use sbatch jobscript.gnu.sh and sbatch jobscript.intel.sh to submit batch jobs

Questions
Investigate region scale. Remember region scale should contain as many reads as write operations.
Why is the read volume

twice as high as the write volume when using GNU compiler?
equal to write volume when using Intel compiler?

30/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

Part of Linux kernel
No recompilation needed
⇒ Use your existing binary
Uses hardware performance counters
Uses sampling

Low overhead
Only statistical results

Find hot spots
(functions or code regions)
Record call graph
(with compiler flag -g)

31/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

perf tools

Usage
perf list # available HW counters
perf stat ${BINARY} # profile w. HW counters
perf record ${BINARY} # measurement -> perf.data
perf report # Hot spot report
perf annotate # Annotated assembler code

Example
perf: dgemm

perf: stream

32/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

perf tools (2)

Preparation
Get familiar with perf
Change to folder HandsOn/Stream
Use scripts ./build.debug.sh to build stream benchmark with debug symbols
Use sbatch jobscript.perf.sh to submit batch job

Questions
What are the 4 hot spots of stream?
Navigate to tuned_STREAM_Triad

What assembler instructions are used?
Do they use vector registers?

33/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

No recompilation needed
⇒ Use your existing binary
Uses sampling

Low overhead
Only statistical results

Uses MPI library instrumentation
Collect non-statistical data
Communication pattern
Message sizes

Can use compiler instrumentation
Can cause significant overhead
Collect non-statistical data
Call graph

34/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Intel Trace Analyzer and Collector (ITAC)

Graphical tool shows
Event timeline
Quantitative timeline
Function profile
Message profile

Usage
Prepare environment
source /software/all/toolkit/Intel_OneAPI/setvars.sh
mpirun -trace ${BINARY} # Execute MPI program
traceanalyzer ${BINARY}.stf # Analyze data

Example:
ITAC: MPI benchmark rank_league

35/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Intel Trace Analyzer and Collector (ITAC) (2)

Preparation
Change to folder HandsOn/Rank_league
Use scripts ./build.itac.sh to build rank_league benchmark
Use sbatch jobscript.itac.sh to submit batch job
Use traceanalyzer rank_league.stf to open trace file

Questions
What is shown in

Flat Profile?
Load Balance?
Call Tree?

What is shown in graphical tools
Event timeline?
Quantitative timeline?
Function profile?
Message profile?

36/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

Hands On

Hardware

Technical Overview Of The 4th Gen Intel® Xeon® Scalable processor family

4th Gen AMD EPYC Processor Architecture

Benchmarks

DGEMM benchmark from Sandia National Laboratories

Stream benchmark original version; John D. McCalpin

37/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

References

https://www.intel.com/content/www/us/en/developer/articles/technical/fourth-generation-xeon-scalable-family-overview.html
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/
https://www.cs.virginia.edu/stream/

Performance Tools

Intel® VTune™ Profiler (Application Performance Snapshot),
Get Started with Application Performance Snapshot - Linux* OS
Intel® Trace Analyzer and Collector,
Get Started with Intel® Trace Analyzer and Collector,
Intel® Trace Analyzer and Collector User and Reference Guide
LIKWID Performance Tools
Github-page: Likwid
GNU Time

38/38 2023-06-14 H. Obermaier: Introduction to Performance Engineering on HPC Steinbuch Centre for Computing (SCC)

References

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/get-started-application-snapshot/2023-1/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-analyzer.html
https://www.intel.com/content/www/us/en/docs/trace-analyzer-collector/get-started-guide/2023-1/overview.html
https://www.intel.com/content/www/us/en/docs/trace-analyzer-collector/user-guide-reference/2023-1/overview.html
https://hpc.fau.de/research/tools/likwid/
https://github.com/RRZE-HPC/likwid
https://www.gnu.org/software/time/

	Optimization cycle
	Tool Test Cases
	Likwid Tools: Overview
	Likwid Tools: likwid-topology
	Likwid Tools: likwid-bench
	Compiler Optimization Report
	/usr/bin/time
	Application Performance Snapshot (APS)
	Likwid Tools: likwid-perfctr
	Likwid Tools: likwid-perfctr Marker API
	perf tools
	Intel Trace Analyzer and Collector (ITAC)
	References

