
performance/compiler_optionen/intel/example_vec_report_stream

Example: Intel legacy compiler optimization re-
port for benchmark stream

• stream source code snippet

/* ---
Tuned vector scale: b[] = scalar * c[]

In: STREAM_ARRAY_SIZE_thread, scalar, c[]
Out: b[]
--- */
void static inline tuned_STREAM_Scale(const STREAM_TYPE scalar) {

#pragma omp parallel default(none) shared(scalar, STREAM_ARRAY_SIZE_thread)
{

#ifdef __INTEL_COMPILER
// Instructs the compiler to use non-temporal (that is, streaming) stores
#pragma vector nontemporal

#endif
#pragma omp simd aligned(b, c : alignment_bytes)
for (long int j = 0; j < STREAM_ARRAY_SIZE_thread; j++) {

b[j] = scalar * c[j]; // Line: 349
}

}
}

/* ---
Tuned vector add: c[] = a[] + b[]

In: STREAM_ARRAY_SIZE_thread, a[], b[]
Out: c[]
--- */
void static inline tuned_STREAM_Add() {

#pragma omp parallel default(none) shared(STREAM_ARRAY_SIZE_thread)

1

{
#ifdef __INTEL_COMPILER

// Instructs the compiler to use non-temporal (that is, streaming) stores
#pragma vector nontemporal

#endif
#pragma omp simd aligned(a, b, c : alignment_bytes)
for (long int j = 0; j < STREAM_ARRAY_SIZE_thread; j++) {

c[j] = a[j] + b[j]; // Line: 369
}

}
}

• Prepare environment

module purge
module add compiler/intel/2022

• Compile benchmark with optimization report enabled

icc -std=c11 -Ofast -xHost -ipo -qopenmp \
-qopt-report=5 \
-qopt-report-phase=vec \
-qopt-report-stdout \
stream.OpenMP.c -o stream

• Output

...
LOOP BEGIN at stream.OpenMP.c(348,9) inlined into stream.OpenMP.c(679,5)

remark #15388: vectorization support: reference *b[j] has aligned access [stream.OpenMP.c(349,13)]
remark #15388: vectorization support: reference *c[j] has aligned access [stream.OpenMP.c(349,29)]
remark #15412: vectorization support: streaming store was generated for b [stream.OpenMP.c(349,13)]
remark #15305: vectorization support: vector length 4
remark #15309: vectorization support: normalized vectorization overhead 0.200
remark #15301: SIMD LOOP WAS VECTORIZED
remark #26013: Compiler has chosen to target XMM/YMM vector. Try using -qopt-zmm-usage=high to override
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 7
remark #15477: vector cost: 1.250
remark #15478: estimated potential speedup: 5.580
remark #15488: --- end vector cost summary ---

LOOP END

LOOP BEGIN at stream.OpenMP.c(348,9) inlined into stream.OpenMP.c(679,5)
<Remainder loop for vectorization>

2

...
LOOP END

...
LOOP BEGIN at stream.OpenMP.c(368,9) inlined into stream.OpenMP.c(680,5)

remark #15388: vectorization support: reference *c[j] has aligned access [stream.OpenMP.c(369,13)]
remark #15388: vectorization support: reference *a[j] has aligned access [stream.OpenMP.c(369,20)]
remark #15388: vectorization support: reference *b[j] has aligned access [stream.OpenMP.c(369,27)]
remark #15412: vectorization support: streaming store was generated for c [stream.OpenMP.c(369,13)]
remark #15305: vectorization support: vector length 4
remark #15301: SIMD LOOP WAS VECTORIZED
remark #26013: Compiler has chosen to target XMM/YMM vector. Try using -qopt-zmm-usage=high to override
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 1.250
remark #15478: estimated potential speedup: 6.400
remark #15488: --- end vector cost summary ---

LOOP END

LOOP BEGIN at stream.OpenMP.c(368,9) inlined into stream.OpenMP.c(680,5)
<Remainder loop for vectorization>
...
LOOP END

– Report on successful vectorization
– Report on data alignment
– Report on vector length
– Report on loads, stores and streaming store

3

	Example: Intel legacy compiler optimization report for benchmark stream

