Tools/APS/example rank league

Example Intel Application Performance Snap-
shot: rank_league

o Prepare environment
module purge

# Load Intel compiler environment
source /software/all/toolkit/Intel_OneAPI/compiler/latest/env/vars.sh

# Load Intel MPI environment
source /software/all/toolkit/Intel_OneAPI/mpi/latest/env/vars.sh

o Build rank_league benchmark
mpicc -Ofast -xHost -ipo ramk_league.c -o rank_league
o Jobscript jobscript.aps.sh

#!/usr/bin/bash

#SBATCH --partition=<...>
#SBATCH ——nodes=4

#SBATCH —-tasks-per—-node=1
#SBATCH --time=10

# Prepare environment
module purge

# Load Intel compiler environment
source /software/all/toolkit/Intel_OneAPI/compiler/latest/env/vars.sh

# Load Intel MPI environment
source /software/all/toolkit/Intel_OneAPI/mpi/latest/env/vars.sh

# Load Application Performance Snapshot (APS) environment
source /software/all/toolkit/Intel_OneAPI/vtune/latest/apsvars.sh



# Set MPI Level of Detail

# See: https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide-applicat:
# To get information about transfers per communication. Set the APS STAT LEVEL wvalue tc
export MPS_STAT_LEVEL=2

# rank_league options

# test_type: b - banwidth

# output_type: s - statistics per rank - average, min, mazx
# loop_num: number of loops per every round
RANK_LEAGUE_OPTIONS=( -t=b -o=s -1=20000 )

MPIRUN_OPTIONS=( -print-rank-map -binding domain=core )

mpirun "${MPIRUN_OPTIONS[@]}" aps ./rank_league "${RANK_LEAGUE_OPTIONS[@]}"
¢ Run benchmark rank_league with APS with batch system

sbatch rank_league.aps.job
e Job output

(hkn0004:0)
(hkn0005:1)
(hkn0006:2)
(hkn0007:3)

**xxxx Running bandwidth test *kk*kkxx

Total number of rounds: 3

Total number of loops per round: 20000

Message size: 100000

ok ok ok K o ok ok K K ok ok K K ok ok ok K ok ok K K ok ok ok 3k ok ok Kk K ok ok ok

Round number 3

ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

RANK MIN MAX AVERAGE

RESULT RANK RESULT RANK

0 9880.39 2 16132.57 1 13536.02
1 9595.56 0 17246.61 3 12239.32
2 9697.62 0 17418.24 3 14390.22
3 9708.94 2 16937.74 1 12147 .46
Global statistics:

MIN 9595.56 between 1 and O

MAX 17418.24 between 2 and 3

AVERAGE 13078.26
Intel(R) VTune(TM) Profiler 2023.1.0 collection completed successfully. Use the "aps --

¢ Generate APS report:



aps —-report <...>/aps_result_20230526

Loading 100.00%
| Summary information

Application : rank_league

Report creation date : 2023-05-26 15:13:34
Number of ranks : 4

Ranks per node 1

HW Platform :

Frequency : 2.39 GHz

Logical core count per node : 162

Collector type
Used statistics

Elapsed Time:

SP GFLOPS:

DP GFLOPS:

Average CPU Frequency:
IPC Rate:

issue threshold of the metric.

details.
MPI Time:

Your application is MPI bound. This may be caused by high busy wait time

= W o oON

Some of the individual values contributing to

.10
.00
.00
.38 GHz
.09

S

: Driverless Perf per-process counting
: <...>/aps_result_20230526

Your application might underutilize the available logical CPU cores
because of insufficient parallel work, blocking on synchronization, or too much I/O.

Intel(R) Xeon(R) Processor code named Icelake

this average metric broke the

1.79 s

Please use --counters or --metrics="Instructions Per Cycle Rate" reports for

87.40% of Elapsed

inside the library (imbalance), non-optimal communication schema or MPI

MPI profiling tools like Intel(R) Trace Analyzer and Collector to explore

|
|
| library settings. Explore the MPI Imbalance metric if it is available or use
|
|

possible performance bottlenecks.
MPI Imbalance:
Top 5 MPI functions (avg time):
MPI TIsend:
MPI _TIrecv:
MPI_Init:
MPI_Barrier:
MPI_Waitall:
Physical Core Utilization:

0

O O O O O O

.01

.66
.62
.34
12
.04
.95%

n n n n

0

32
30
16

5

.30%

.39%
.407%
.68%
.83
2.

11%

of

of
of
of
of
of

The metric is below 80% threshold, which may signal a poor physical CPU
utilization caused by: load imbalance, threading runtime overhead, contended

Elapsed

Elapsed
Elapsed
Elapsed
Elapsed
Elapsed

cores

logical cores instead of physical cores. Perform threading analysis with tools
like Intel(R) VTune(TM) Profiler to discover why physical cores are

|
|
| synchronization, insufficient parallelism, incorrect affinity that utilizes
|
|

Time

Time

Time
Time
Time
Time
Time



underutilized.
Average Physical Core Utilization: 0.72 out of 76 Physical Cores
Memory Stalls: 46.30% of Pipeline Slots
The metric value can indicate that a significant fraction of execution
pipeline slots could be stalled due to demand memory load and stores. See the
second level metrics to define if the application is cache- or DRAM-bound and
the NUMA efficiency. Use Intel(R) VTune(TM) Profiler Memory Access analysis to
review a detailed metric breakdown by memory hierarchy, memory bandwidth
information, and correlation by memory objects.

Cache Stalls: 30.10% of Cycles
A significant proportion of cycles are spent on data fetches from cache. Use
Intel(R) VTune(TM) Profiler Memory Access analysis to see if accesses to L2 or
L3 cache are problematic and consider applying the same performance tuning as
you would for a cache-missing workload. This may include reducing the data
working set size, improving data access locality, blocking or partitioning the
working set to fit in the lower cache levels, or exploiting hardware
prefetchers.

DRAM Stalls: 17.52% of Cycles
Some of the individual values contributing to this average metric broke the
issue threshold of the metric.
Please use --counters or --metrics="DRAM Stalls" reports for details.

Average DRAM Bandwidth: N/A

Data for this metric is not collected since it requires system-wide
performance monitoring. Make sure the sampling driver is properly installed on
your system: https://software.intel.com/en-us/vtune-amplifier-help-sep-driver.
Otherwise, enable a driverless Perf-based sampling collection by setting the
/proc/sys/kernel/perf_even_paranoid value to O or less.

NUMA : 0.12% of Remote Accesses
Vectorization: 0.00%
Instruction Mix:
SP FLOPs: 0.00% of ulps
DP FLOPs: 0.00% of ulps
Non-FP: 100.00% of uOps
FP Arith/Mem Rd Instr. Ratio: 0.00
FP Arith/Mem Wr Instr. Ratio: 0.00
Disk I/0 Bound: 0.00 s
Memory Footprint:
Resident:
Per node:
Peak resident set size 123.00 MB (node hkn0005.localdomain)
Average resident set size 119.25 MB
Per rank:
Peak resident set size 123.00 MB (rank 1)
Average resident set size 119.25 MB
Virtual:
Per node:



Peak memory consumption : 261.00 MB (node hkn0005.localdomain)

Average memory consumption : 258.50 MB

Per rank:
Peak memory consumption : 261.00 MB (rank 1)
Average memory consumption : 258.50 MB

Graphical representation of this data is available in the HTML report: <...>/aps_report
Generate APS Rank-to-rank communication matrix (requires MPS_STAT_LEVEL=4):

# in text format

aps —-—report -x <...>/aps_result_20230526

# or in html format

aps —-report -x —--format=html <...>/aps_result_20230526

Loading 100.00%
| Data Transfers per Rank-to-Rank Communication for all Ranks

| Rank --> Rank Time(sec) Volume (MB) Transfers

| o
0000 --> 0001 0.11 4000.00 40008
0000 --> 0002 0.05 2000.00 20006
0000 --> 0003 0.05 2000.00 20006
0001 --> 0000 0.11 4000.00 40009
0001 --> 0002 0.05 2000.00 20006
0001 --> 0003 0.05 2000.00 20006
0002 --> 0000 0.07 2000.00 20007
0002 --> 0001 0.05 2000.00 20006
0002 --> 0003 0.11 4000.00 40008
0003 --> 0000 0.07 2000.00 20007
0003 --> 0001 0.05 2000.00 20006
0003 --> 0002 0.10 4000.00 40008

|

| TOTAL 0.89 32000.00 320083

| AVG 0.07 2666.67 26673



	Example Intel Application Performance Snapshot: rank_league

