Optimal reference distance and its implication on the (Auger) Cosmic Rays Energy Spectrum

O. Deligny, I. Lhenry-Yvon, Q. Luce, M. Roth, D. Schmidt, A.A. Watson

IAP-HEU Groups Seminar - 25th May 2023

A story about the **distance** that wanted to be **optimal** to not affect the **energy spectrum** of Ultra-High Energy Cosmic Rays,

BUT...

On-going analysis, final results expected for the ICRC23 (D.Schmidt)

Prelude: A bit of history

Volcano Ranch

HP: Ave et al. (2003)

Main protagonist: optimal distance

Early days of Haverah Park experiment:

Lateral Distribution Function (LDF) = description of the lateral profile of shower

BUT: shower to shower variation and dependency with energy for the exponent *n*

If $Δ*n* = 0.6 → ΔE_{CB} = 70%$

Event-by-event LDF impossible

Solution: Averaging the LDF

With 50 events of Haverah Park: $r = 500$ m and $\Delta n = 0.6 \rightarrow \Delta p = 12\%$

of assumed structure function in analysis of a shower.

Introduction of a **distance** at which the **signal** is extracted as a **proxy for the energy of the cosmic ray = Optimal distance**

Hillas (1971)

Main protagonist: optimal distance

Fig. 2. ρ (600) as function of E_0 for proton and iron showers at $\theta = 26^{\circ}$, from CORSIKA/OGSJET simulations. Simulation results by Hillas et al. (1971) are plotted as solid line.

Fig. 3. Attenuation of $\rho(600)$ with zenith angle deduced with the constant intensity cut method. Results by Edge et al. (1973) are compared with our analysis.

Introduction of a **distance** at which the **signal** is extracted as a **proxy for the energy of the cosmic ray = Optimal distance**

Ave et al. (2011)

Nowadays, two experiments…

Southern hemisphere: Northern hemisphere:

Malargüe, Mendoza, Argentina

 -3000 km²

1660 **water-Cherenkov detectors** (WCD) on a **1500 m - triangular grid + scintillators surface detectors** (SSD) on top of each WCD (under deployment)

Overlooked by 4 sites of **fluorescence telescopes** (24+3 telescopes)

Millard County, Utah, USA

 -700 km²

507 **scintillators** on a **1200 m - square grid**

Extension of the surface **x4**

6 Overlooked by 3 sites of **fluorescence telescopes** (24+3 telescopes)

Nowadays, two experiments…

Two experiments, **similar** reconstructions…

On the need of an average LDF

Two experiments, **similar** reconstructions…

10

 20.5

19.5

 \vert 19

18.5

 $Color = log_{10}(E/eV)$

 \mathbf{I}

N

Two experiments, two spectra?

Discrepancies persist looking at the same **declination band!**

Events on a **square grid** reconstructed using the **LDF from AGASA (1988)**

Misestimation of the estimator of the shower size → impact on the spectrum?

UHECR2022…

Presentation from **Pavlo Plotko**

Chapter 1: Extraction of the optimal distance

From a simulated data set

Optimal distance = distance at which fluctuations due to the unknown true shape of the LDF are **minimals**

Optimal distance?

Similar results using **iron primaries** or **EPOS-LHC**

One distance for Auger?…

One distance independent of energy or zenith

Non-saturated events

Saturated events \overline{O}

Figure 9. Relative density fluctuation for different compositions. P, proton; M, CNO, Fe, iron (10¹⁷ eV, sec θ = 1.0).

« Figure 9 shows that the optimum distances (where minimum fluctuation is attained) for different compositions are between 600 and 1200 m »

« **This optimum distance varies with energy** »

What could cause the zenith/energy dependency?

Energy dependency of the optimal distance could be due to ?

- **saturation effect**
- **geometry of the array**: square vs triangular
- **parametrization of the LDF**: does it imply differences between SSD/WCD?

Figure 6. Same as figure 5, but for 10^{18} eV primary.

Figure 7. Same as figure 5, but for 10^{19} eV primary.

What is saturation?

Optimal distance and saturation

WCD - Triangular grid – 1500 m *Auger-NKG* **LDF** Proton, θ = 0°, QGSJet-II.04**Unsaturated Saturated Saturated** 0.2 0.16 0.16 $\sigma_{s}(r)$ $\sigma_{s}(r)$ 0.14 0.14 0.12 0.12 $0.1\overline{E}$ 0.1 $0.08⁵$ $0.08E$ $0.06E$ • $\lg(E / \text{eV}) = 18.5$ $lg(E / eV) = 18.5$ $0.06E$ $lg(E / eV) = 19.0$ $lg(E / eV) = 19.0$ 0.04 0.04 • $\lg(E / \text{eV}) = 19.5$ $lg(E / eV) = 19.5$ $0.02E$ $lg(E / eV) = 20.0$ • $\lg(E / \text{eV}) = 20.0$ $0.02E$ 500 1000 1500 2000 1000 500 1500 2000 Distance / m Distance / m

- Shift of the **optimal distance** towards **larger values** (as shown in *Newton et al. (2007)*)
- **Dependency in energy** of the optimal distance in case of saturation (~200 m)
- Similar results on a square grid

Square vs Triangular

Introduction of a **small, dependent in energy, shift of the optimal distance** (from 850 to 950 m)?

Square vs Triangular

SSD – No saturation *AGASA* **LDF** Proton, θ = 0°, QGSJet-II.04

Triangular, 1500 m Square, 1200 m 0.2 $\begin{array}{c} 0.2 \\ \text{Eq} & 0.18 \\ \text{S} & 0.16 \\ \text{S} & 0.14 \\ \text{S} & 0.12 \end{array}$ • $lg(E / eV) = 18.5$ • $lg(E / eV) = 18.5$ $\sigma_{\text{S}}(\textbf{r})$ / S_{LDF} • $\lg(E / eV) = 19.0$ $lg(E / eV) = 19.0$ $lg(E / eV) = 19.5$ $lg(E / eV) = 19.5$ 0.16 0.16 $lg(E / eV) = 20.0$ • $lg(E / eV) = 20.0$ 0.14 0.12 0.12 $0.1\overline{E}$ $0.1\overline{E}$ $0.08\Box$ $0.08\square$ $0.06\pm$ $0.06\Box$ $0.04E$ $0.04\Box$ 0.02 $0.02\overline{E}$ $0_0²$ 0^\vdash 500 1000 1500 2000 500 1000 2000 1500 Distance / m Distance / m

Different spacing and layout but **variations of the signal are the same**?

From Auger/TA working group

World tour of LDFs

Energy dependency of the optimal distance could be due to ?

- **saturation effect:** shift of the optimal distance, energy dependency amplified
- **geometry of the array:** not conclusive, small dependency in Auger-LDF only
- **parametrization of the LDF:** does it imply differences between SSD/WCD?

How to test the parametrization of the LDF? \rightarrow Toy-model MC

- from a particular LDF of an experiment: **creation of an event** draw on a square grid

- **reconstruction 100 times** each event following the characteristics of each experiments (likelihood, signal uncertainties, etc.)

- computation of the **optimal distance**

Telescope Array (Utah, USA)

$$
\rho(r) = A \left(\frac{r}{r_0}\right)^{-1.2} \left(1 + \frac{r}{r_0}\right)^{-(\eta - 1.2)} \left(1 + \left(\frac{r}{1000}\right)^2\right)^{-0.6}, \ r_0 = 91.6 \,\mathrm{m}
$$

$$
\eta = 3.97 - 1.79(\sec \theta - 1)
$$

Square grid, 1000 m, θ = 35°

Volcano Ranch (New Mexico, USA)

$$
\rho(r) = \frac{N}{r_0^2} C(\alpha, \eta) \left(\frac{r}{r_0}\right)^{-\alpha} \left(1 + \frac{r}{r_0}\right)^{-(\eta - \alpha)}, \ r_0 = f(P, T)
$$

$$
\eta = 3.70 - 0.57(\sec \theta - 1) + 0.085 \lg(N/10^8)
$$

Square grid, 1000 m, θ = 35°

Haverah Park (Scotland)

$$
\rho(r) = kr^{-(\eta + r/4000)}
$$

$$
\eta = 3.78 - 1.44(\sec \theta - 1)
$$

Auger-WCD (Argentina)

$$
S(r) = S(1000) \left(\frac{r}{1000}\right)^{-\beta} \left(\frac{r+r_0}{1000+r_0}\right)^{-\gamma}, \ r_0 = 700 \,\mathrm{m}
$$

$$
\eta = f(\theta, S(1000))
$$

Square grid, 1000 m, θ = 35°

Auger-SSD (Argentina)

$$
S(r) = S(1000) \left(\frac{r}{1000}\right)^{-\beta} \left(\frac{r+r_0}{1000+r_0}\right)^{-\gamma}, \ r_0 = 700 \,\mathrm{m}
$$

$$
\eta = f(\theta, S(1000))
$$

Square grid, 1000 m, θ = 35°

Change of LDF parameters

SSD, **no saturation**

Square, 1200 m

Proton, $lg(E/eV) = 19$, $\theta = 48^\circ$, QGSJet-II.04

Huge change of the optimal distance

31 Is there a set of values of (r_0, α, η) for which the optimal distance is **independent of energy**? **In each energy and zenith bins, using a χ 2 , check all sets of (r0, α, η)**

Interlude

Energy dependency of the optimal distance could be due to ?

- saturation effect \rightarrow saturation is responsible of a shift of the optimal distance towards the closest distance at which a station has a non-saturated signal

- square vs triangular grid \rightarrow first check from TA seem to invalidate this hypothesis \rightarrow spacing and effect from the saturation ?

- **AGASA-LDF itself (***Dai et al. 1988***): Is it possible to find a parametrization removing the dependency in energy?**

Chapter 2: Impact on the energy spectrum?

Fluctuations of *S*(1000) for vertical events

What about saturation?

What about the energy?

What about the energy?

Use of *non-optimal* distance

Source of non-linearities in real-data?

Non-linearities : increase to 15% bias from 10 EeV to 100 EeV

hex. grid: standard Auger array – bias and resolution from *Phys. Rev. D 102, 062005 (2020)* sq. grid: SSD on a 1200 m squared array

Impact on the spectrum

hex. grid: standard Auger array – bias and resolution from *Phys. Rev. D 102, 062005 (2020)* sq. grid: SSD on a 1200 m squared array

41

UHECR2022…

Presentation from **Valerio Verzi**, for the Auger and TA collaborations

End of the story?

Origin of the energy-dependent optimal distance **is complex** :

 \rightarrow to which extent the parametrization of the **shape of the LDF** is determined by the detectors?

3 contributors:

- unknown shape of the true LDF
- saturation of the detectors
- geometry of the array

Lack of knowledge of **the true LDF impacts the reconstructed spectrum** In Auger, systematics derived by projecting uncertainties on the slope into the energy

Combining a non-optimal distance with variation of the slope on a different grid?

Optimal reference distance and its implication on the (Auger) Cosmic Rays Energy Spectrum

O. Deligny, I. Lhenry-Yvon, Q. Luce, M. Roth, D. Schmidt, A.A. Watson

IAP-HEU Groups Seminar - 25th May 2023

Only?

*Trugarez !**

Back-up

Fluctuations of *S*(1000) - θ=48°

LDFs

lg(E/eV) = 19, θ = 35°

 $\sigma_n = 0.187$

 $\sigma_{\eta} = \sqrt{0.13^2 + 0.62^2(\sec \theta - 1)^2}$

Correlation of r_0 and exponents – Auger WCD

Correlation of r_0 and exponents – Auger WCD

Visualisation of the minima – Auger

 $S(r) = S(1000) \left(\frac{r}{1000}\right)^{-\beta} \left(\frac{r+r_0}{1000+r_0}\right)^{-\gamma}$

Auger-NKG **LDF** Proton, QGSJet-II.04 $lg(E/eV) = 19, \theta = 48^\circ$ **Triangular array, 1500 m**

Correlation of r_0 and exponents – TA SSD

Visualisation of the minima – TA

AGASA **LDF**

Proton, QGSJet-II.04 $lg(E/eV) = 19, \theta = 48^\circ$ **Square array, 1200 m**

$$
\rho(r) = \rho(800) \left(\frac{r}{800}\right)^{-\alpha} \left(\frac{r+r_0}{800+r_0}\right)^{-(\eta-\alpha)}
$$

Correlation of the parameters of the LDF

SSD, **no saturation,** *AGASA* **LDF Square, 1200 m** Proton, $lg(E/eV) = 19$, $\theta = 48^\circ$, QGSJet-II.04

In each energy and zenith bins, using a χ 2 , check all sets of (r0, α, η)

 $\sigma_{\eta}=0.187$

$\sigma_{\eta} = \sqrt{0.13^2 + 0.62^2(\sec \theta - 1)^2}$

