Optimal reference distance and its implication on the (Auger) Cosmic Rays Energy Spectrum

O. Deligny, I. Lhenry-Yvon, <u>Q. Luce</u>, M. Roth, D. Schmidt, A.A. Watson

IAP-HEU Groups Seminar - 25th May 2023

A story about the **distance** that wanted to be **optimal** to not affect the **energy spectrum** of Ultra-High Energy Cosmic Rays,

BUT...

On-going analysis, final results expected for the ICRC23 (D.Schmidt)

Prelude: A bit of history

Volcano Ranch

HP: Ave et al. (2003)

Main protagonist: optimal distance

Early days of Haverah Park experiment:

Lateral Distribution Function (LDF) = description of the lateral profile of shower

BUT: shower to shower variation and dependency with energy for the exponent *n*

If $\Delta n = 0.6 \rightarrow \Delta E_{CR} = 70\%$

Event-by-event LDF impossible

Solution: Averaging the LDF

With 50 events of Haverah Park: $r = 500 \text{ m and } \Delta n = 0.6 \rightarrow \Delta \rho = 12\%$

Fig. 2: Effect of change of assumed structure function in analysis of a shower.

Introduction of a **distance** at which the **signal** is extracted as a **proxy for the energy of the cosmic ray = Optimal distance**

Hillas (1971)

Main protagonist: optimal distance

Fig. 2. $\rho(600)$ as function of E_0 for proton and iron showers at $\theta = 26^\circ$, from CORSIKA/QGSJET simulations. Simulation results by Hillas et al. (1971) are plotted as solid line.

Fig. 3. Attenuation of $\rho(600)$ with zenith angle deduced with the constant intensity cut method. Results by Edge et al. (1973) are compared with our analysis.

Introduction of a **distance** at which the **signal** is extracted as a **proxy for the energy of the cosmic ray = Optimal distance**

Ave et al. (2011)

Nowadays, two experiments...

Southern hemisphere:

Malargüe, Mendoza, Argentina

~3000 km²

1660 water-Cherenkov detectors (WCD) on a **1500 m - triangular grid + scintillators surface detectors** (SSD) on top of each WCD (under deployment)

Overlooked by 4 sites of **fluorescence telescopes** (24+3 telescopes) Northern hemisphere:

Telescope Array (TA)

Millard County, Utah, USA

~700 km²

507 scintillators on a 1200 m - square grid

Extension of the surface x4

Overlooked by 3 sites of **fluorescence telescopes** (24+3 telescopes) 6

Nowadays, two experiments...

Telescope Array (TA)

Two experiments, **similar** reconstructions...

On the need of an average LDF

Two experiments, **similar** reconstructions...

Color = log₁₀(E/eV)

II

Two experiments, two spectra?

Discrepancies persist looking at the same **declination band!**

Events on a square grid reconstructed using the LDF from AGASA (1988)

Misestimation of the estimator of the shower size \rightarrow impact on the spectrum?

UHECR2022...

Presentation from Pavlo Plotko

Chapter 1: Extraction of the optimal distance

From a simulated data set

Optimal distance = distance at which fluctuations due to the unknown true shape of the LDF are **minimals**

Optimal distance?

Similar results using iron primaries or EPOS-LHC

One distance for Auger?...

One distance independent of energy or zenith

Non-saturated events

Saturated events

Figure 9. Relative density fluctuation for different compositions. P, proton; M, CNO, Fe, iron $(10^{17} \text{ eV}, \sec \theta = 1.0)$.

 \ll Figure 9 shows that the optimum distances (where minimum fluctuation is attained) for different compositions are between 600 and 1200 m \gg

« This optimum distance varies with energy »

What could cause the zenith/energy dependency?

Energy dependency of the optimal distance could be due to ?

- saturation effect
- geometry of the array: square vs triangular
- parametrization of the LDF: does it imply differences between SSD/WCD?

Figure 6. Same as figure 5, but for 10^{18} eV primary.

Figure 7. Same as figure 5, but for 10^{19} eV primary.

What is saturation?

Optimal distance and saturation

- Shift of the optimal distance towards larger values (as shown in Newton et al. (2007))
- **Dependency in energy** of the optimal distance in case of saturation (~200 m)
- Similar results on a square grid

Square vs Triangular

Introduction of a **small, dependent in energy, shift of the optimal distance** (from 850 to 950 m)?

Square vs Triangular

SSD – No saturation AGASA LDF

Proton, $\theta = 0^{\circ}$, QGSJet-II.04

Different spacing and layout but variations of the signal are the same?

From Auger/TA working group

World tour of LDFs

Energy dependency of the optimal distance could be due to ?

- saturation effect: shift of the optimal distance, energy dependency amplified
- geometry of the array: not conclusive, small dependency in Auger-LDF only
- parametrization of the LDF: does it imply differences between SSD/WCD?

How to test the parametrization of the LDF? \rightarrow Toy-model MC

- from a particular LDF of an experiment: creation of an event draw on a square grid

- **reconstruction 100 times** each event following the characteristics of each experiments (likelihood, signal uncertainties, etc.)

- computation of the **optimal distance**

Telescope Array (Utah, USA)

$$\begin{split} \rho(r) &= A \left(\frac{r}{r_0}\right)^{-1.2} \left(1 + \frac{r}{r_0}\right)^{-(\eta - 1.2)} \left(1 + \left(\frac{r}{1000}\right)^2\right)^{-0.6} \ , \ r_0 = 91.6 \,\mathrm{m} \\ \eta &= 3.97 - 1.79 (\sec \theta - 1) \end{split}$$

Square grid, 1000 m, $\theta = 35^{\circ}$

Volcano Ranch (New Mexico, USA)

$$\rho(r) = \frac{N}{r_0^2} C(\alpha, \eta) \left(\frac{r}{r_0}\right)^{-\alpha} \left(1 + \frac{r}{r_0}\right)^{-(\eta - \alpha)}, \ r_0 = f(P, T)$$
$$\eta = 3.70 - 0.57(\sec\theta - 1) + 0.085 \lg(N/10^8)$$

Square grid, 1000 m, $\theta = 35^{\circ}$

Haverah Park (Scotland)

$$\rho(r) = kr^{-(\eta + r/4000)}$$
$$\eta = 3.78 - 1.44(\sec\theta - 1)$$

Auger-WCD (Argentina)

$$S(r) = S(1000) \left(\frac{r}{1000}\right)^{-\beta} \left(\frac{r+r_0}{1000+r_0}\right)^{-\gamma}, \ r_0 = 700 \,\mathrm{m}$$
$$\eta = f(\theta, S(1000))$$

Square grid, 1000 m, $\theta = 35^{\circ}$

Auger-SSD (Argentina)

$$S(r) = S(1000) \left(\frac{r}{1000}\right)^{-\beta} \left(\frac{r+r_0}{1000+r_0}\right)^{-\gamma}, \ r_0 = 700 \,\mathrm{m}$$
$$\eta = f(\theta, S(1000))$$

Square grid, 1000 m, $\theta = 35^{\circ}$

Change of LDF parameters

SSD, no saturation

Square, 1200 m

Proton, lg(E/eV) = 19, $\theta = 48^{\circ}$, QGSJet-II.04

Huge change of the optimal distance

Is there a set of values of (r_0, α, η) for which the optimal distance is **independent of energy**? In each energy and zenith bins, using a χ^2 , check all sets of (r_0, α, η) 31

Interlude

Energy dependency of the optimal distance could be due to ?

- saturation effect $\rightarrow\,$ saturation is responsible of a shift of the optimal distance towards the closest distance at which a station has a non-saturated signal

- square vs triangular grid \rightarrow first check from TA seem to invalidate this hypothesis \rightarrow spacing and effect from the saturation ?

- AGASA-LDF itself (*Dai et al. 1988*): Is it possible to find a parametrization removing the dependency in energy?

Chapter 2: Impact on the energy spectrum?

Fluctuations of S(1000) for vertical events

What about saturation?

What about the energy?

Slope of the Auger-NKG LDF fixed

What about the energy?

Use of non-optimal distance

Source of non-linearities in real-data?

Non-linearities : increase to 15% bias from 10 EeV to 100 EeV

hex. grid: standard Auger array – bias and resolution from *Phys. Rev. D* 102, 062005 (2020) sq. grid: SSD on a 1200 m squared array

Impact on the spectrum

hex. grid: standard Auger array – bias and resolution from *Phys. Rev. D* 102, 062005 (2020) sq. grid: SSD on a 1200 m squared array

41

UHECR2022...

Presentation from Valerio Verzi, for the Auger and TA collaborations

End of the story?

Origin of the energy-dependent optimal distance **is complex** :

 \rightarrow to which extent the parametrization of the shape of the LDF is determined by the detectors?

3 contributors:

- unknown shape of the true LDF
- saturation of the detectors
- geometry of the array

Lack of knowledge of **the true LDF impacts the reconstructed spectrum** In Auger, systematics derived by projecting uncertainties on the slope into the energy

Combining a non-optimal distance with variation of the slope on a different grid?

Optimal reference distance and its implication on the (Auger) Cosmic Rays Energy Spectrum

O. Deligny, I. Lhenry-Yvon, Q. Luce, M. Roth, D. Schmidt, A.A. Watson

IAP-HEU Groups Seminar - 25th May 2023

Only?

	Thursday
	Grilled filet of gilthead with homemade herb butter and rosemary potatoes (13,15)
	€ 6.95
D I	Closed
5	
	Vegan Greek-style roll with tomato, sweet potato fries, and lecsó (9.12we,18,27)
s,	€ 5.75 Fine roast sausage with gravy, white cabbage with caraway and onions, and herb potatoes (5,11,29)
)	€ 4.40
	Vegetarian pizza with cheese, champignons, broccoli, pepper, and cherry tomatoes (12we,13,20,26)
	€ 6.25

Trugarez !*

Back-up

Fluctuations of $S(1000) - \theta = 48^{\circ}$

LDFs

 $lg(E/eV) = 19, \theta = 35^{\circ}$

48

 $\sigma_{\eta} = 0.187$

 $\sigma_{\eta} = \sqrt{0.13^2 + 0.62^2 (\sec \theta - 1)^2}$

Correlation of r₀ and exponents – Auger WCD

Correlation of r₀ and exponents – Auger WCD

Visualisation of the minima – Auger

 $S(r) = S(1000) \left(\frac{r}{1000}\right)^{-\beta} \left(\frac{r+r_0}{1000+r_0}\right)^{-\gamma}$

Auger-NKG LDF Proton, QGSJet-II.04 $lg(E/eV) = 19, \theta = 48^{\circ}$ Triangular array, 1500 m

Correlation of r_0 and exponents – TA SSD

Visualisation of the minima – TA

AGASA LDF

Proton, QGSJet-II.04 lg(E/eV) = 19, θ = 48° Square array, 1200 m

$$\rho(r) = \rho(800) \left(\frac{r}{800}\right)^{-\alpha} \left(\frac{r+r_0}{800+r_0}\right)^{-(\eta-\alpha)}$$

Correlation of the parameters of the LDF

SSD, no saturation, AGASA LDF Square, 1200 m Proton, lg(E/eV) = 19, $\theta = 48^{\circ}$, QGSJet-II.04

In each energy and zenith bins, using a χ^2 , check all sets of (r_0 , α , η)

 $\sigma_{\eta} = 0.187$

$\sigma_{\eta} = \sqrt{0.13^2 + 0.62^2 (\sec \theta - 1)^2}$

