Non-standard interactions of neutrinos

YASAMAN FARZAN

IPM, TEHRAN

Different kinds of coupling to a new scalar

Yukawa interaction:

Gauge coupling:

Coupling to higher spin particles?

Higher dimension operators?

Different kinds of coupling to a new scalar

Yukawa interaction:

Gauge coupling:

Focus of this talk

Coupling to higher spin particles?

Higher dimension operators?

Effects of NSI on neutrinos

Neutral current Non-Standard Interaction (NSI): propagation of neutrinos in matter

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

Charged current Non-Standard Interaction (NSI): production and detection

$$\mathcal{L}_{\rm CC-NSI} = -2\sqrt{2}G_F \,\epsilon^{ff'X}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\ell_{\beta}\right) \left(\bar{f}'\gamma_{\mu}P_Xf\right)$$

Effects of NSI on neutrinos

Neutral current Non-Standard Interaction (NSI): propagation of neutrinos in matter

Charged current Non-Standard Interaction (NSI): production and detection

Outline

Impact on propagation of neutrinos in matter and consequences for neutrino experiments

Underlying models

Bounds from various experiments with focus on CEVNS

Non-standard neutral current interaction

$$\mathcal{L}_{\text{NC-NSI}} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$
Projection
Matter field

matrix

ivialler neiu

Neutrino propagation:

$$\epsilon^{f}_{\alpha\beta} \equiv \epsilon^{fL}_{\alpha\beta} + \epsilon^{fR}_{\alpha\beta}.$$

Hamiltonian of neutrinos

$$i\frac{d}{dx}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = H^{\nu}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} \qquad \qquad H^{\nu} = H_{\rm vac} + H_{\rm mat} \quad \text{and} \quad H^{\bar{\nu}} = (H_{\rm vac} - H_{\rm mat})^*$$

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{bmatrix} \begin{bmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \end{bmatrix} \begin{bmatrix} \cos \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $H_{vac} = U \cdot \text{Diag}(m_1^2/2E_{\nu}, m_2^2/2E_{\nu}, m_3^2/2E_{\nu}) \cdot U^{\dagger}$

Matter effects in presence of NSI

$$i\frac{d}{dx}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = H^{\nu}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} \qquad \qquad H^{\nu} = H_{\rm vac} + H_{\rm mat} \quad \text{and} \quad H^{\bar{\nu}} = (H_{\rm vac} - H_{\rm mat})^*$$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F \sum_{f=e,u,d} N_f(r) \begin{pmatrix} \varepsilon_{ee}^f & \varepsilon_{e\mu}^f & \varepsilon_{e\tau}^f \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^f & \varepsilon_{\mu\tau}^f \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^f \end{pmatrix}$$

Effects of NSI in long baseline experiments

Renewed interest in NSI

NSI can fake CP-violation and lead to wrong determination of θ_{23} octant and mass ordering

Masud and Mehta, PRD 94(2016); Forero and Huber, PLB 117 (2016); Liao, Marfatia and Whistnant PRD 93 (2016); JHEP 1701 (2017) 071; Agarwalla, Chatterjee and Palazzo, PLB 762 (2016); Verma and Bhardwaj, 1808.04263; Flore, Garces, Miranda, Phys Rev D98 (2018)35030; Wang and Zhou, 1801.05656; Deepath, Goswami and Nath, 1711.04840; 1612.00784; Fukasawa, Ghosh, Yasuda, PRD 95 (2017); Forero and Huang, JHEP 1703 (2017); Ge and Smirnov, JHEP 1610; A. de Gouvea and K Kelly, 1605.09376; Coloma, Schwetz, PRD 94 (2016)

Liao Marfatia Whisnant, PRD93 (2016)

SM with $\delta = 0$

Octant discovery potential of DUNE

Agarwalla, Chatterjee and Palazzo, PLB 762 (2016)

Fit to solar and KamLand data

Miranda, Tortola and Valle, JHEP 2006; Escrihuela et al., PRD 2009

Maltoni and Gonzalez-Garcia, JHEP 2013

LMA-Dark solution

LMA-Dark solution provides even a better fit. (suppression of low energy upturn)

$$\varepsilon^u_{ee} - \varepsilon^u_{\mu\mu} \qquad [-1.192, -0.802]$$

 $\theta_{12} > \pi/4.$

Total flux measurement at SNO

Neutral current

Deuteron dissociation

$$D + \nu \rightarrow p + n + \nu$$

Gamow-Teller transition

Sensitive only to axial-vector interaction No effect from $\epsilon^f_{\alpha\beta} \equiv \epsilon^{fL}_{\alpha\beta} + \epsilon^{fR}_{\alpha\beta}$

Scattering experiments

$$\mathcal{L}_{NSI} = -2\sqrt{2}G_F \epsilon^{fP}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta}) (\bar{f}\gamma_{\mu}P \ f)$$

NuTeV and CHARM rule out a large part (but not all) of parameter space of LMA-Dark solution. Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003 COHERENT experiment (a CEVNS setup) also rules out LMA-Dark solution.

P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, PRD 94 (2017) 115007;

P. Coloma, P. Denton, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, JHEP1704 (2017) 116

Scattering experiments

$$\mathcal{L}_{NSI} = -2\sqrt{2}G_F \epsilon^{fP}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta}) (\bar{f}\gamma_{\mu}P \ f)$$

NuTeV and CHARM rule out a large part (but not all) of parameter space of LMA-Dark solution.

Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003

COHERENT experiment (a CEVENS setup) also rules out LMA-Dark solution.

P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, PRD 94 (2017) 115007;

P. Coloma, P. Denton, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, JHEP1704 (2017) 116

But not in the model that we shall present

Determining 12 octant

Shedding light on LMA-Dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50

YF and Bakhti, JHEP 2014

$$P(\bar{\nu}_e \to \bar{\nu}_e) = \left| |U_{e1}|^2 + |U_{e2}|^2 e^{i\Delta_{21}} + |U_{e3}|^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{12}^2 c_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{12}^2 c_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{12}^2 c_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{12}^2 c_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{12}^2 c_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{12}^2 c_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2 = \left| c_{12}^2 c_{13}^2 + s_{13}^2 e^{i\Delta_{21}} + s_{13}^2 e^{i\Delta_{31}} \right|^2$$

$$c_{13}^4 (1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta_{21}}{2}) + s_{13}^4 + 2s_{13}^2 c_{13}^2 [\cos \Delta_{31} (c_{12}^2 + s_{12}^2 \cos \Delta_{21}) + s_{12}^2 \sin \Delta_{31} \sin \Delta_{21}]$$

Medium Baseline reactor experiments

DAYA BAY in CHINA JUNO RENO in South Korea RENO-50

Ready for data taking in 2020.

Baseline $\sim 50 \text{ km}$

Main goal determination of

 $\operatorname{sgn}(\Delta m_{31}^2)$

RENO-50 in South Korea

Daya Bay and Juno

Allowed region at 3 σ C.L. after 5 years of data taking by RENO-50 and JUNO.

Generalized mass ordering degeneracy

$$\theta_{12} \to \frac{\pi}{2} - \theta_{12}, \ \delta \to \pi - \delta, \ \Delta m_{31}^2 \to -\Delta m_{31}^2 + \Delta m_{21}^2, \ \text{and} \ V_{eff} \to -S \cdot V_{eff}^* \cdot S$$

$$S = \text{Diag}(1, -1, -1)$$
 and $(V_{eff})_{\alpha\beta} = \sqrt{2}G_F N_e[(\delta_{\alpha 1}\delta_{\beta 1}) + \epsilon_{\alpha\beta}]$

$$\epsilon_{\alpha\beta} = \sum_{f \in \{e,u,d\}} (N_f/N_e) \epsilon^f_{\alpha\beta}$$

Generalized mass ordering degeneracy

$$\theta_{12} \to \frac{\pi}{2} - \theta_{12}, \ \delta \to \pi - \delta, \ \Delta m_{31}^2 \to -\Delta m_{31}^2 + \Delta m_{21}^2, \ \text{and} \ V_{eff} \to -S \cdot V_{eff}^* \cdot S$$

$$S = \text{Diag}(1, -1, -1)$$
 and $(V_{eff})_{\alpha\beta} = \sqrt{2}G_F N_e[(\delta_{\alpha 1}\delta_{\beta 1}) + \epsilon_{\alpha\beta}]$

No dependence on energy and baseline

$$\epsilon_{\alpha\beta} = \sum_{f \in \{e,u,d\}} (N_f/N_e) \epsilon^f_{\alpha\beta}$$

Degeneracy cannot be solved by changing baseline/beam energy.

Generalized mass ordering degeneracy

$$\theta_{12} \to \frac{\pi}{2} - \theta_{12}, \ \delta \to \pi - \delta, \ \Delta m_{31}^2 \to -\Delta m_{31}^2 + \Delta m_{21}^2, \ \text{and} \ V_{eff} \to -S \cdot V_{eff}^* \cdot S$$

$$S = \text{Diag}(1, -1, -1) \text{ and } (V_{eff})_{\alpha\beta} = \sqrt{2}G_F N_e[(\delta_{\alpha 1}\delta_{\beta 1}) + \epsilon_{\alpha\beta}]$$
$$\epsilon_{\alpha\beta} = \sum_{f \in \{e, u, d\}} (N_f/N_e)\epsilon^f_{\alpha\beta}$$

Variation of N_n/N_e can solve the degeneracy.

Global analysis of oscillation data

	LMA	$LMA \oplus LMA-D$
$\begin{aligned} \varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu} \\ \varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu} \end{aligned}$	$\begin{bmatrix} -0.020, +0.456 \end{bmatrix} \\ \begin{bmatrix} -0.005, +0.130 \end{bmatrix}$	$\oplus [-1.192, -0.802]$ [-0.152, +0.130]
$arepsilon^u_{e\mu} \ arepsilon^u_{e au} \ arepsilon^u_{e au} \ arepsilon^u_{e au} \ arepsilon^u_{\mu au}$	[-0.060, +0.049] [-0.292, +0.119] [-0.013, +0.010]	$\begin{bmatrix} -0.060, +0.067 \end{bmatrix}$ $\begin{bmatrix} -0.292, +0.336 \end{bmatrix}$ $\begin{bmatrix} -0.013, +0.014 \end{bmatrix}$

Esteban, Gonzalez-Garcia, M. Maltoni, Martinez-Soler and J Salvado, arXiv:1805.04530

Underlying theory for NSI

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

Integrating out a heavy intermediate state

Neutral U(1) gauge boson as mediator

 $Z'_{\mu}\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}$

 $Z'_{\mu}\bar{f}\gamma^{\mu}P_Xf$

Charged scalar (a la Fierz transforamation)

$$\overline{\psi_1} P_L \psi_2 \overline{\psi_3} P_R \psi_4 = \overline{\psi_{1R}} \psi_{2L} \overline{\psi_{3L}} \psi_{4R} = -\frac{1}{2} \overline{\psi_1} \gamma^\mu P_R \psi_4 \overline{\psi_3} \gamma_\mu P_L \psi_2$$

Forero and Huang, JHEP 1703 (2017); Bischer, Rodejohann and Xu, arXiv:1807.08102

Underlying theory for NSI

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

Integrating out a heavy intermediate state

Neutral U(1) gauge boson as mediator

 $Z'_{\mu}\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}$

Our Focus $Z_{\mu}^{\prime}ar{f}\gamma^{\mu}P_Xf$

Charged scalar (a la Fierz trasnforamation)

$$\overline{\psi_1} P_L \psi_2 \overline{\psi_3} P_R \psi_4 = \overline{\psi_{1R}} \psi_{2L} \overline{\psi_{3L}} \psi_{4R} = -\frac{1}{2} \overline{\psi_1} \gamma^\mu P_R \psi_4 \overline{\psi_3} \gamma_\mu P_L \psi_2$$

Forero and Huang, JHEP 1703 (2017); Bischer, Rodejohann and Xu, arXiv:1807.08102

Underlying theory for LMA-Dark?

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

Various model with heavy intermediate particle For a review see:

T. Ohlsson, "Status of non-standard neutrino interactions," Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710 [hep-ph]].

Too small NSI

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

$$\epsilon^{f}_{\alpha\beta} \equiv \epsilon^{fL}_{\alpha\beta} + \epsilon^{fR}_{\alpha\beta}.$$

$$\epsilon \sim \left(\frac{g_X^2}{m_X^2}\right) G_F^{-1}$$

 $m_X \gg 100 \text{ GeV}$

 $\epsilon \ll 1$

Suggestion

Whatif

$m_X \sim 10 { m MeV}$

YF, A model for large non-standard interactions leading to LMA-Dark solution, Phys. Lett. B748 (2015) 311-315; YF and J Heeck, Neutrinophilic nonstandard interactions, PRD 94 (2016) 53010; YF and I Shoemaker, lepton flavor violating NSI via light mediator, JHEP 1607 (2016) 33. YF and M Tortola, "neutrino oscillations and non-standard interactions" to appear in Frontiers in physics

Suggestion

Bounds can be avoided not because the mass of the intermediate state is high But because coupling is small!

Neutral current Non-Standard Interactions

NSI
$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \,\varepsilon_{\alpha\beta}^{fX} \,(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Xf)$$

Y.F. and J. Heeck, PRD94 (2016); Y.F. and Shoemaker, JHEP 1607 (2016); YF, PLB 748 (2015)

$$g_{\nu}\bar{\nu}\gamma^{\mu}\nu Z'_{\mu} \qquad \qquad g_{B}\bar{q}\gamma^{\mu}qZ'_{\mu}$$

 $\alpha - \alpha$

Harnik, Kopp and Machado, JCAP 1207 (2012) 026

Effect in early universe

Huang, Ohlsson, Zhou, PRD 97 (2018) 075009

Huang, Ohlsson, Zhou, PRD 97 (2018) 075009

9/3/18

Coupling to quarks

Non-chiral couplings: No impact on total measurement at SNO

Bounds on Couplings of neutrinos

$$R_M \equiv \frac{Br(M^+ \to e^+ + \text{missing energy})}{Br(M^+ \to \mu^+ + \text{missing energy})} \quad M^+ = \pi^+, K^+$$

 $\pi \rightarrow evZ'$ $k^+ \rightarrow e^+ vvv$ PIENU(R_π)
PIENU(R_π), Projected
NA62(R_K)

P Bakhti and YF, PRD 95 (2017) 095008

P Bakhti and YF, PRD 95 (2017) 095008

Coupling to neutrinos

Direct coupling to neutrinos

Gauge symmetry:

$$a_e L_e + a_\mu L_\mu + a_\tau L_\tau + B$$

Coupling to neutrinos through mixing with $\psi\colon \kappa_lpha$ Gauge symmetry: $a_\psi L_\psi + B$

Coupling to neutrinos

Direct coupling to neutrinos

Gauge symmetry:

 $a_e L_e + a_\mu L_\mu + a_\tau L_\tau + B$

$$\epsilon^{u}_{\alpha\alpha} = \epsilon^{d}_{\alpha\alpha} = \frac{g'^{2}a_{\alpha}}{6\sqrt{2}G_{F}m^{2}_{Z'}} \quad \text{and} \quad \epsilon^{u}_{\alpha\alpha} = 0|_{\alpha\neq\beta}.$$

Harnik, Kopp and Machado, JCAP 1207 (2012) 026

$a_e L_e + a_\mu L_\mu + a_\tau L_\tau + B$

 $a_e = 0$

Anomaly cancelation: $a_{\mu} = a_{\tau} = -3/2$ Reproducing best fit $g' = 4 \times 10^{-5} \frac{m_{Z'}}{10 \text{ MeV}} \left(\frac{\epsilon_{ee} - \epsilon_{\mu\mu}}{0.3}\right)^{1/2}$

$$c\tau_{Z'} \sim 10^{-9} \,\mathrm{km} \left(\frac{7 \times 10^{-5}}{g'}\right)^2 \left(\frac{10 \,\mathrm{MeV}}{m_{Z'}}\right) \frac{1}{a_{\mu}^2 + a_{\tau}^2}$$

Coupling of neutrinos through mixing

$$g'a_{\Psi}Z'_{\mu}\left(\sum_{\alpha,\beta}\kappa^{*}_{\alpha}\kappa_{\beta}\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}-\kappa^{*}_{\alpha}\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\Psi-\kappa_{\alpha}\bar{\Psi}\gamma^{\mu}P_{L}\nu_{\alpha}\right)$$

 $|\kappa_e|^2 < 2.5 \times 10^{-3}$ $|\kappa_e|^2 < 4.4 \times 10^{-4}$ and $|\kappa_\tau|^2 < 5.6 \times 10^{-3}$ at 2σ

Fernandez-Martinez et al., JHEP 08 (2016) 033

Coupling of neutrinos through mixing

$$g'a_{\Psi}Z'_{\mu}\left(\sum_{\alpha,\beta}\kappa^{*}_{\alpha}\kappa_{\beta}\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}-\kappa^{*}_{\alpha}\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\Psi-\kappa_{\alpha}\bar{\Psi}\gamma^{\mu}P_{L}\nu_{\alpha}\right)$$

$$\epsilon^{u}_{\alpha\beta} = \epsilon^{d}_{\alpha\beta} = \frac{g^{\prime 2}a_{\Psi}\kappa^{*}_{\alpha}\kappa_{\beta}}{6\sqrt{2}G_{F}m^{2}_{Z^{\prime}}} \qquad \qquad \epsilon^{u(d)}_{\alpha\alpha}\epsilon^{u(d)}_{\beta\beta} = |\epsilon^{u(d)}_{\alpha\beta}|^{2}$$

$$\epsilon^{u}_{\alpha\beta} = \epsilon^{d}_{\alpha\beta} = 1 \left(\frac{g'}{10^{-5}} \right) \left(\frac{g' a_{\Psi}}{1} \right) \frac{\kappa^{*}_{\alpha} \kappa_{\beta}}{10^{-3}} \left(\frac{10 \text{ MeV}}{m_{Z'}} \right)^{2}$$

Neutrino scattering experiments

 $q^2 \gg m_{Z'}^2$

 $\mathcal{L}_{NSI} = -2\sqrt{2G_F}\epsilon^{fP}_{\alpha\beta}(\nu_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}P\ f)$

Suppression factor $m_{Z'}^2/(q^2 - m_{Z'}^2)$

Neutrino scattering experiments

 $10 \text{ MeV} \stackrel{<}{\sim} m_{Z'} \ll 1 \text{ GeV}$

Relaxing bounds from scattering experiments, NuTeV and CHARM

Set-up of the COHERENT experiment

Detector: 14.6 kg Csl scintillator

Source: Spallation Neutron Source (SNS) at Oak Ridge National Lab

$$\pi^+ \to \mu^+ + \nu_\mu \qquad \mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e$$

$$N_{\rm POT} = 1.76 \times 10^{23}$$
 $L = 19.3 {\rm m}$

Akimov et al., Science 357 (2017) No 6356, 1123

COHERENT experiment

Neutrino source: Pion decay at rest

 $\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$

JHEP 1704 (2017) 116

P. Coloma, P. Denton, Gonzalez-Garcia, Maltoni and Schwetz, "curtailing the dark Side in non-standard neutrino interaction," JHEP 1704 (2017) 116

Akimov et al., Science 357 (2017) No 6356, 1123

Standard coherent interaction

$$\frac{d\sigma_{\alpha}}{dE_r} = \frac{G_F^2}{2\pi} Q_{\alpha}^2 F^2 (2ME_r) M \left(2 - \frac{ME_r}{E_{\nu}^2}\right)$$

$$Q_{\alpha,\rm SM}^2 = \left(Zg_p^V + Ng_n^V\right)^2$$

Liao and Marfatia, Phys Lett B775 (2017) 54

Coherent interaction with light mediator

$$\begin{aligned} \frac{d\sigma_{\alpha}}{dE_{r}} &= \frac{G_{F}^{2}}{2\pi} Q_{\alpha}^{2} F^{2} (2ME_{r}) M \left(2 - \frac{ME_{r}}{E_{\nu}^{2}}\right) \\ Q_{\alpha,\text{NSI}}^{2} &= \left[Z \left(g_{p}^{V} + \frac{3g^{2}}{2\sqrt{2}G_{F}(Q^{2} + M_{Z'}^{2})}\right) + N \left(g_{n}^{V} + \frac{3g^{2}}{2\sqrt{2}G_{F}(Q^{2} + M_{Z'}^{2})}\right) \right]^{2} \end{aligned}$$

$$Q^2 = 2ME_r$$

Liao and Marfatia, Phys Lett B775 (2017) 54

Liao and Marfatia, Phys Lett B775 (2017) 54

LMA-Dark after COHERENT data

Denton, YF and Shoemaker, JHEP 1807 (2018) 037; arXiv:1804.03660.

Denton, YF and Shoemaker, JHEP 1807 (2018) 037; arXiv:1804.03660.

COherent NeUtrino Scattering experiment (CONUS)

Germanium detector with detection threshold of 0.1 keV located 17 m away from a nuclear power plant 3.9 GW in Brokdorf, Germany

Solar neutrino interaction at DM direct detection experiments

Y.F. and J. Heeck, PRD94 (2016);

Cerdeno et al, JHEP 05 (2016) 118

SuperCDMS SNOLAB LUX-ZEPLIN

LMA-DARK solution

BBN+CMB

No Dip is cosmic neutrino spectrum Viable Z' mass range

Summary

In the neutrino precision era, NSI should be taken seriously. LMA-Dark solution is still alive.

Neutrino coupling with light particles can be embedded in electroweak symmetric models.

Information can be found from low energy experiments: CONUS, COHERENT, NA62 and etc.

Backup slides

COHERENT experiment

Akimov et al., "Observation of Coherent Elastic neutrino Nucleus Scattering," science 357 (2017) No 6356, 1123

Observational consequences

Emission in Supernova

Similarto

$$\mathcal{L}_{\mu} - \mathcal{L}_{\tau}$$

Kamada and Yu, arXiv:1504.00711

 $c\tau_{Z'} \sim 10^{-9} \mathrm{km} (g'/7 \times 10^{-5})^{-2} (T/10 \text{ MeV}) (10 \text{ MeV}/m_{Z'})^2$

Reduced mean free path for

 ν_{μ} and ν_{τ}

prolong the diffusion time

High energy cosmic neutrino

Kamada and Yu, arXiv:1504.00711

 $\mathcal{L}_{\mu} - \mathcal{L}_{ au}$

$$\nu\nu \to Z' \to \nu\nu$$

Background neutrino at rest

$400~{\rm TeV}$ to ${\rm PeV}$

Dip or gap in ICECUBE spectrum

Results of Contained Vertex Event Search (4.3 σ)

Theoretical prediction of dip in 400 TeV to PeV is robust!

Testing model

		90% CL		3σ	
Param.	best-fit	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$
$\varepsilon_{ee}^u - \varepsilon_{\mu\mu}^u$	+0.298	[+0.00, +0.51]	\oplus [-1.19, -0.81]	[-0.09, +0.71]	\oplus [-1.40, -0.68]
$\varepsilon^u_{\tau\tau} - \varepsilon^u_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.03, +0.03]	[-0.03, +0.20]	[-0.19, +0.20]
$\varepsilon^{u}_{e\mu}$	-0.021	[-0.09, +0.04]	[-0.09, +0.10]	[-0.16, +0.11]	[-0.16, +0.17]
$\varepsilon_{e\tau}^{u}$	+0.021	[-0.14, +0.14]	[-0.15, +0.14]	[-0.40, +0.30]	[-0.40, +0.40]
$\varepsilon^{u}_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]	[-0.03, +0.03]	[-0.03, +0.03]
ε_D^u	-0.140	[-0.24, -0.01]	\oplus [+0.40, +0.58]	[-0.34, +0.04]	\oplus [+0.34, +0.67]
ε^u_N	-0.030	[-0.14, +0.13]	[-0.15, +0.13]	[-0.29, +0.21]	[-0.29, +0.21]
$\varepsilon^d_{ee} - \varepsilon^d_{\mu\mu}$	+0.310	[+0.02, +0.51]	\oplus [-1.17, -1.03]	[-0.10, +0.71]	$\oplus [-1.44, -0.87]$
$\varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.01, +0.03]	[-0.03, +0.19]	[-0.16, +0.19]
$\varepsilon^{d}_{e\mu}$	-0.023	[-0.09, +0.04]	[-0.09, +0.08]	[-0.16, +0.11]	[-0.16, +0.17]
$\varepsilon^{d}_{e\tau}$	+0.023	[-0.13, +0.14]	[-0.13, +0.14]	[-0.38, +0.29]	[-0.38, +0.35]
$\varepsilon^d_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]	[-0.03, +0.03]	[-0.03, +0.03]
ε_D^d	-0.145	[-0.25, -0.02]	\oplus [+0.49, +0.57]	[-0.34, +0.05]	\oplus [+0.42, +0.70]
ε^d_N	-0.036	[-0.14, +0.12]	[-0.14, +0.12]	[-0.28, +0.21]	[-0.28, +0.21]

Maltoni and Gonzalez-Garcia, JHEP 2013

Yukawa coupling of neutrinos

 $\lambda_1 \bar{N}_1 H^T cL_e + \lambda_2 \bar{N}_2 H^T cL_\mu + \lambda_3 \bar{N}_3 H^T cL_\tau + \lambda_4 \bar{N}_2 H^T cL_\tau + \lambda_5 \bar{N}_3 H^T cL_\mu + \text{H.c.}$

Basis change:
$$\lambda_4 = 0 \text{ or } \lambda_5 = 0$$

Mix: ν_{μ} and ν_{τ} No mixing: ν_{e} and ν_{μ} ν_{e} and ν_{τ}

Majorana masses

If there is no Majorana mass for right-handed neutrinos:

1)
$$m_{N_i} \sim m_{\nu}$$

$$(\Delta N_{eff})$$

2) Smallness of neutrino mass
Majorana masses

 $M_1 N_1^T c N_1 + S_1 (A_2 N_2^T c N_2 + A_3 N_3^T c N_3 + A_{23} N_2^T c N_3) + S_2 (B_2 N_1^T c N_2 + B_3 N_1^T c N_3) + \text{H.c.}$

Neutrino trident scattering

 $\nu + A \rightarrow \nu + A + \mu^+ + \mu^-$

CCFR collaboration:

scattering of $\sim 160 \text{ GeV}$ neutrino beam off an iron target

PRL66 (1991)

CHARM II collaboration

scattering of $\sim 20 \text{ GeV}$ neutrino beam off a glass target

PLB 245 (1990)

Neutrino trident scattering

$(\bar{u}\gamma^{\rho}Pu)(\bar{\nu}_{\mu}\gamma_{\rho}L\nu_{\mu})$	$ \varepsilon_{\mu\mu}^{uL} < 0.003$	$ \varepsilon_{\mu\mu}^{uL} < 0.001$
	$-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$	$ \varepsilon_{\mu\mu}^{uR} < 0.002$
	NuTeV	s_W^2 in DIS at nufact
$(\bar{d}\gamma^{\rho}Pd)(\bar{\nu}_{\mu}\gamma_{\rho}L\nu_{\mu})$	$ arepsilon_{\mu\mu}^{dL} < 0.003$	$ arepsilon_{\mu\mu}^{dL} < 0.0009$
	$-0.008 < \varepsilon^{dR}_{\mu\mu} < 0.015$	$ \varepsilon_{\mu\mu}^{dR} < 0.005$
	NuTeV	s_W^2 in DIS at nufact

Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003

NuTeV: Muon neutrino energy~75 GeV

$(\bar{u}\gamma^{\rho}Pu)(\bar{\nu}_e\gamma_{\rho}L\nu_e)$	$-1 < \varepsilon_{ee}^{uL} < 0.3$	$\left \varepsilon_{ee}^{uL}\right < 0.001$
	$-0.4 < \varepsilon_{ee}^{uR} < 0.7$	$ \varepsilon_{ee}^{uR} < 0.002$
	CHARM	s_W^2 in DIS at nufact
$(\bar{d}\gamma^{\rho}Pd)(\bar{\nu}_e\gamma_{\rho}L\nu_e)$	$-0.3 < \varepsilon_{ee}^{dL} < 0.3$	$ \varepsilon_{ee}^{dL} < 0.0009$
	$-0.6 < \varepsilon_{ee}^{dR} < 0.5$	$ \varepsilon_{ee}^{dR} < 0.005$
	CHARM	s_W^2 in DIS at nufact

Davidson, Pena-Garay, Rius, SantaMaria, JHEP 2003

 $\nu_e q \rightarrow \nu q$ scattering