Sterile neutrinos at the high-luminosity LHC

work with Juan Carlos Helo and Martin Hirsch arXiv: 1803.02212 Zeren Simon Wang

Invisibles18, KIT, Germany September 3 2018

- 2 Future Detectors
- 3 Type-I Seesaw Model
- 4 Numerical Results

Z.S. Wang

æ

- ∢ ∃ ▶

- Light long-lived particles (LLLPs) appear in many extensions of the standard model (SM) including sterile neutrinos.
- It is expected that the LHC will deliver up to 3000/fb of luminosity over the next 15 20 years
- No promptly decaying new particles found (yet) at the LHC
- New proposals to search for LLLPs: CODEX-b, FASER and MATHUSLA, all based on the idea to exploit LHC's large luminosity

Detectors: CODEX-b

CODEX-b, a Compact Detector for Exotics at LHCb: $10m \times 10m \times 10m$ [arXiv : 1708.09395]

	$L_{min}(m)$	$L_{max}(m)$	ϕ	η	$\mathcal{L}(\textit{fb}^{-1})$
CODEX-b	25	35	0.4	[0.2, 0.6]	300

FASER: ForwArd Search ExpeRiment, a cylindrical detector in very forward direction along beam axis [arXiv : 1708.09389, 1710.09387]

	$L_{min}(m)$	$L_{max}(m)$	ϕ	η	$\mathcal{L}(\textit{fb}^{-1})$	r(m)
FASER ^R	390	400	2π	$[6.68, +\infty]$	3000	1

Detectors: MATHUSLA

MATHUSLA: [arXiv : 1606.06298]

MAssive Timing Hodoscope for Ultra Stable neutraL pArticles: surface detector above the ATLAS IP: $200m \times 200m \times 20m$

	$L_{min}(m)$	$L_{max}(m)$	ϕ	η	$\mathcal{L}(\textit{fb}^{-1})$
MATHUSLA	141 & 269	170 & 323	$\pi/2$	[0.88, 1.65]	3000

Type-I Seesaw Model

$$\mathcal{L} = \frac{g}{\sqrt{2}} V_{\alpha N_j} \bar{l}_{\alpha} \gamma^{\mu} P_L \nu_{S_j} W_{L\mu}^- + \frac{g}{2 \cos \theta_W} \sum_{\alpha, i, j} V_{\alpha i}^L V_{\alpha N_j}^* \overline{\nu_{S_j}} \gamma^{\mu} P_L \nu_i Z_\mu$$

- V: mixing matrix between active and sterile neutrinos
- $|V_{\alpha N_i}|^2$ controls **both** production **and** decay of sterile neutrinos
- For simplicity, only one of $|V_{eN}|$ and $|V_{\mu N}|$ assumed as non-zero
- Production channels: D- and B-mesons, W-, Z- and Higgs bosons

Numerical Results: sterile neutrinos

- LHC(LHCb) up to 3000(300)/fb luminosity by 2035. Great discovery potential for LLLPs
- New proposed detectors: CODEX-b, FASER and MATHUSLA
- Example model: sterile neutrino
 - FASER^R and CODEX-b show very similar sensitivities,
 - MATHUSLA is more sensitive than both FASER^{*R*} and CODEX-b, even competitive with the fixed target experiment SHiP.
- MATHUSLA shows the best sensitivity but has the largest instrumented volume. FASER setups considered so far are quite small, and hence interesting to study.

Thank You!