

UNIVERSITAT DE BARCELONA



# Effect of Fermionic Operators on the Gauge Legacy of the LHC Run I

arXiv:1805.11108,

In collaboration with A. Alves, O.Eboli, M.C.Gonzalez-Garcia

Nuno Rosa Invisibles 2018 workshop, 3rd of September, 2018

Supported by EU Networks FP10 ITN ELUSIVES (H2020-MSCA-ITN-2015-674896)

- Within the framework of the SM, the trilinear and quartic vector-boson couplings are completely determined by the gauge symmetry.
- The scrutiny these interactions can either lead to an additional confirmation of the SM or give some hint on the existence of new phenomena at a higher scale.
- TGCs as well as fermion pair-gauge boson couplings contribute to WW and WZ productions.



• A popular approach is to study possible shifts in the SM using a model independent framework, an effective Lagrangian,

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{n>4,j} \frac{f_{n,j}}{\Lambda^{n-4}} \mathcal{O}_{n,j} \; ,$$

• A popular approach is to study possible shifts in the SM using a model independent framework, an effective Lagrangian,

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{n>4,j} \frac{f_{n,j}}{\Lambda^{n-4}} \mathcal{O}_{n,j} \; ,$$

 And for TGC, the most relevant *C*- and *P*-conserving dimension–six bosonic operators belong to the following subset (HISZ basis):

$$\begin{aligned} \mathcal{O}_W &= (D_\mu \Phi)^{\dagger} \widehat{W}^{\mu\nu} (D_\nu \Phi) \ , \quad \mathcal{O}_B &= (D_\mu \Phi)^{\dagger} \widehat{B}^{\mu\nu} (D_\nu \Phi) \ , \\ \textbf{(1)} \mathcal{O}_{BW} &= \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi \ , \qquad \textbf{(1)} \mathcal{O}_{\Phi,1} &= (D_\mu \Phi)^{\dagger} \Phi \Phi^{\dagger} (D^\mu \Phi) \ , \\ \mathcal{O}_{WWW} &= \mathrm{Tr} [\widehat{W}^{\nu}_{\mu} \widehat{W}^{\rho}_{\nu} \widehat{W}^{\mu}_{\rho}] \ . \end{aligned}$$

(1) In Buttler, Eboli et al. [1604.03105]  $\mathcal{O}_{BW}$  and  $\mathcal{O}_{\Phi,1}$  were not included in the analysis because of EWPD.

• These operators introduce changes in the TGCs:

$$\Delta \mathcal{L} = -ie \ \Delta \kappa_{\gamma} \ W^{+}_{\mu} W^{-}_{\nu} \gamma^{\mu\nu} - \frac{ie\lambda_{\gamma}}{2M_{W}^{2}} \ W^{+}_{\mu\nu} W^{-\nu\rho} \gamma^{\mu}_{\rho} - \frac{iec_{W}\lambda_{Z}}{2M_{W}^{2}} \ W^{+}_{\mu\nu} W^{-\nu\rho} Z^{\mu}_{\rho}$$
$$- iec_{W} \ \Delta \kappa_{Z} \ W^{+}_{\mu} W^{-}_{\nu} Z^{\mu\nu} - iec_{W} \ \Delta g_{1}^{Z} \ \left( W^{+}_{\mu\nu} W^{-\mu} Z^{\nu} - W^{+}_{\mu} Z_{\nu} W^{-\mu\nu} \right)$$

such that the TGC effective couplings are:

$$\begin{split} \Delta \kappa_{\gamma} &= \frac{e^2 v^2}{8 s_{W}^2 \Lambda^2} \left( f_W + f_B - 2 f_{BW} \right) \\ \Delta g_1^Z &= \frac{e^2 v^2}{8 s_{W}^2 c_{W}^2 \Lambda^2} \left( f_W + \frac{2 s_{W}^2}{c_{2\theta_W}} f_{BW} \right) - \frac{1}{4 c_{2\theta_W}} \frac{v^2}{\Lambda^2} f_{\Phi,1} \\ \Delta \kappa_Z &= \Delta g_1^Z - \frac{s_{W}^2}{c_{W}^2} \Delta \kappa_{\gamma} \\ \lambda_{\gamma} &= \lambda_Z = \frac{3 e^2 M_W^2}{2 s_{W}^2 \Lambda^2} f_{WWW} \end{split}$$

#### Our Goal

•  $V \bar{f} f$  can play a role in the diboson production even taking into account the EWPD constraints. z. Zhang (1610.01618); Baglio, Dawson, Lewis (1708.03332)  $\mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{L}_{i} \gamma^{\mu} L_{j}), \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi)(\bar{L}_{i} \gamma^{\mu} T_{a} L_{j}),$   $\mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{Q}_{i} \gamma^{\mu} Q_{j}), \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi)(\bar{Q}_{i} \gamma^{\mu} T_{a} Q_{j}),$   $\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{u}_{R_{i}} \gamma^{\mu} u_{R_{j}}), \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{d}_{R_{i}} \gamma^{\mu} d_{R_{j}}),$  $\mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{e}_{R_{i}} \gamma^{\mu} e_{R_{j}}).$ 

#### Our Goal

•  $V \bar{f} f$  can play a role in the diboson production even taking into account the EWPD constraints. z. Zhang [1610.01618]; Baglio, Dawson, Lewis [1708.03332]  $\mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{L}_{i} \gamma^{\mu} L_{j}), \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi)(\bar{L}_{i} \gamma^{\mu} T_{a} L_{j}),$   $\mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{Q}_{i} \gamma^{\mu} Q_{j}), \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi)(\bar{Q}_{i} \gamma^{\mu} T_{a} Q_{j}),$   $\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{u}_{R_{i}} \gamma^{\mu} u_{R_{j}}), \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{d}_{R_{i}} \gamma^{\mu} d_{R_{j}}),$  $\mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{e}_{R_{i}} \gamma^{\mu} e_{R_{j}}).$ 



#### Our Goal

• 
$$V \bar{f} f$$
 can play a role in the diboson production even taking into account the EWPD constraints. Z. Zhang [1610.01618]; Baglio, Dawson, Lewis [1708.03332]  
 $\mathcal{O}_{\Phi L,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{L}_{i} \gamma^{\mu} L_{j}), \mathcal{O}_{\Phi L,ij}^{(3)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi)(\bar{L}_{i} \gamma^{\mu} T_{a} L_{j}),$   
 $\mathcal{O}_{\Phi Q,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{Q}_{i} \gamma^{\mu} Q_{j}), \mathcal{O}_{\Phi Q,ij}^{(3)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu}^{a} \Phi)(\bar{Q}_{i} \gamma^{\mu} T_{a} Q_{j}),$   
 $\mathcal{O}_{\Phi u,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{u}_{R_{i}} \gamma^{\mu} u_{R_{j}}), \mathcal{O}_{\Phi d,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{d}_{R_{i}} \gamma^{\mu} d_{R_{j}}),$   
 $\mathcal{O}_{\Phi e,ij}^{(1)} = \Phi^{\dagger}(i \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{e}_{R_{i}} \gamma^{\mu} e_{R_{j}}).$ 

Main goal: revisit the 8 TeV LHC Run I data and study the impact of the fermionic operators on the TGC bounds:)

### **Analysis Framework**

• Kinematic distribuitions from the leptonic  $W^+ W^-$  and  $W^{\pm} Z$  channels.

| Channel ( <b>a</b> )                                   | Distribution                   | Data set                           |
|--------------------------------------------------------|--------------------------------|------------------------------------|
| $WW  ightarrow \ell^+ \ell'^- + E_T$ (0j)              | $p_T^{ m leading, lepton}$     | ATLAS 8 TeV, 20.3 fb <sup>-1</sup> |
| $WW  ightarrow \ell^+ \ell^{(\prime)-} + E_T (0j)$     | $m_{\ell\ell'}$                | CMS 8 TeV, 19.4 fb <sup>-1</sup>   |
| $W\!Z  ightarrow \ell^+ \ell^- \ell^{(\prime)\pm}$     | m <sup>WZ</sup>                | ATLAS 8 TeV, 20.3 fb <sup>-1</sup> |
| $WZ  ightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + E_T$ | $Z$ candidate $p_T^{\ell\ell}$ | CMS 8 TeV, 19.6 fb <sup>-1</sup>   |



#### **Analysis Framework**

• Kinematic distribuitions from the leptonic  $W^+ W^-$  and  $W^{\pm} Z$  channels.

| Channel ( <i>a</i> )                                   | Distribution                   | Data set                           |
|--------------------------------------------------------|--------------------------------|------------------------------------|
| $WW  ightarrow \ell^+ \ell'^- + E_T (0j)$              | $p_T^{ m leading, lepton}$     | ATLAS 8 TeV, 20.3 fb <sup>-1</sup> |
| $WW  ightarrow \ell^+ \ell^{(\prime)-} + E_T (0j)$     | $m_{\ell\ell'}$                | CMS 8 TeV, 19.4 fb <sup>-1</sup>   |
| $WZ  ightarrow \ell^+ \ell^- \ell^{(\prime)\pm}$       | $m_T^{WZ}$                     | ATLAS 8 TeV, 20.3 fb <sup>-1</sup> |
| $WZ  ightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + E_T$ | $Z$ candidate $p_T^{\ell\ell}$ | CMS 8 TeV, 19.6 fb <sup>-1</sup>   |

 We construct a χ<sup>2</sup> including the EWPD, ATLAS and CMS 8 TeV data for WW and WZ productions:

$$\begin{split} \chi^{2}_{\rm LHC-RI+EWPD} &\equiv \chi^{2}_{\rm LHC-RI}(f_{W},f_{B},f_{WWW},f_{BW},f_{\Phi,1},f^{(1)}_{\phi,0},f^{(3)}_{\phi,0},f^{(1)}_{\phi,u},f^{(1)}_{\phi,d}) \\ &+ \chi^{2}_{\rm EWPD}(f_{BW},f_{\Phi,1},f^{(1)}_{\phi,0},f^{(3)}_{\phi,0},f^{(1)}_{\phi,u},f^{(1)}_{\phi,d},f^{(1)}_{\phi,e}) \end{split}$$

### How the bounds of the TGC "canonical" coefficients change?

• The 1  $\sigma$  and 95% CL allowed regions obtained combining all channels and experiments for the two scenarios: with and without the new operators.



#### The effect of each of the additional operators



- The inclusion of anomalous couplings of gauge bosons to fermions modifies the TGC measurement at LHC.
- The addition of the new operators modifies the TGC bounds on  $f_B/\Lambda^2$  and  $f_W/\Lambda^2$ , although the limit on  $f_{WWW}/\Lambda^2$  remains almost unchanged.

- The inclusion of anomalous couplings of gauge bosons to fermions modifies the TGC measurement at LHC.
- The addition of the new operators modifies the TGC bounds on  $f_B/\Lambda^2$  and  $f_W/\Lambda^2$ , although the limit on  $f_{WWW}/\Lambda^2$  remains almost unchanged.

## Danke schön!

| coupling               | 95% allowed range (TeV <sup>-2</sup> ) |                      |  |
|------------------------|----------------------------------------|----------------------|--|
|                        | EWPD                                   | LHC RI (9 OP) + EWPD |  |
| f <sub>BW</sub>        | (-0.32 , 1.7)                          | (-0.33 , 1.7)        |  |
| <i>f</i> <sub>Φ1</sub> | (-0.040 , 0.15)                        | (-0.042 , 0.15)      |  |
| $f_{\Phi Q}^{(1)}$     | (-0.083 , 0.10)                        | (-0.048 , 0.12)      |  |
| $f_{\Phi Q}^{(3)}$     | (-0.60 , 0.12)                         | (-0.52 , 0.18)       |  |
| $f_{\Phi u}^{(1)}$     | (-0.25 , 0.37)                         | (-0.19 , 0.42)       |  |
| $f_{\Phi d}^{(1)}$     | (-1.2, -0.13)                          | (-0.73 , 0.023)      |  |

**Table 1:** 95% C.L. allowed ranges for the Wilson coefficients of the dimension–six operators that contribute to the studied processes in gauge boson pair production at LHC.

