 $SO(10) \times S_4$ Grand Unified Theory of Flavour and Leptogenesis

Elena Perdomo $¹$ </sup>

in collaboration with:

Francisco J. de Anda², Stephen F. King¹

arXiv: 1710.03229

¹University of Southampton

 2 Tepatitlán's Institute for Theoretical Studies, C.P. 47600, Jalisco, México

3 rd September, 2018

 3^{rd} September, 2018 1 / 12

Elena Perdomo (1710.03229) [Invisibles18 Workshop](#page-18-0)

The origin of the three families of quarks and leptons with their pattern of masses and mixing.

The origin of the three families of quarks and leptons with their pattern of masses and mixing.

Neutrino mass mechanism

The origin of the three families of quarks and leptons with their pattern of masses and mixing.

- Neutrino mass mechanism
	- Baryon Asymmetry of the Universe:

$$
\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq \frac{n_B}{n_{\gamma}} = (6.1 \pm 0.1) \times 10^{-10}
$$

The origin of the three families of quarks and leptons with their pattern of masses and mixing.

- Neutrino mass mechanism
- Baryon Asymmetry of the Universe:

$$
\eta_B \equiv \frac{n_B-n_{\bar{B}}}{n_\gamma} \simeq \frac{n_B}{n_\gamma} = (6.1 \pm 0.1) \times 10^{-10}
$$

SUSY FLAVOUR GUTS

 \bullet S₄: Symmetric group of permutations of 4 objects ∼= group of rotational symmetries of a cube.

Broken spontaneously by scalar fields, flavons ϕ

$$
\mathcal{L} \sim \frac{1}{\lambda} \phi H \bar{\psi} \psi \to \frac{\langle \phi \rangle}{\lambda} H \bar{\psi} \psi \to y H \bar{\psi} \psi
$$

Yukawa parameters are given a dynamical origin.

 \bullet S₄: Symmetric group of permutations of 4 objects ∼= group of rotational symmetries of a cube.

Broken spontaneously by scalar fields, flavons ϕ

$$
\mathcal{L} \sim \frac{1}{\lambda} \phi H \bar{\psi} \psi \rightarrow \frac{\langle \phi \rangle}{\lambda} H \bar{\psi} \psi \rightarrow y H \bar{\psi} \psi
$$

Yukawa parameters are given a dynamical origin.

 \bullet SO(10): A complete family of quarks and leptons fits into a single 16 representation

Including the Right Handed Neutrino $(RHN) \rightarrow type-I$ seesaw mechanism

The flavon superpotential fixes the symmetry breaking flavon VEVs

$$
\langle \phi_1 \rangle = v_1 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad \langle \phi_2 \rangle = v_2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad \langle \phi_3 \rangle = v_3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$

"CSD2 vacuum alignment"

VEVs are driven to scales with the hierarchy

 $v_1 \ll v_2 \ll v_3$

 $v_1 \simeq 0.001 M_{GUT}$, $v_2 \simeq 0.1 M_{GUT}$, $v_3 \simeq M_{GUT}$

CP spontaneously broken by the complex VEVs of the flavons.

Elena Perdomo (1710.03229) [Invisibles18 Workshop](#page-0-0)

Up-type quarks and neutrinos Yukawa matrices $Y_{ij} \sim \langle \phi_i \rangle \langle \phi_j \rangle^T$ with an universal structure

$$
Y^{u,\nu}=y_1^{u,\nu}e^{i\eta}\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix}+y_2^{u,\nu}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}+y_3^{u,\nu}e^{i\eta'}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

The right-handed (RH) neutrino mass M^R has the same structure as the Y^{ν} .

Up-type quarks and neutrinos Yukawa matrices $Y_{ij} \sim \langle \phi_i \rangle \langle \phi_j \rangle^T$ with an universal structure

$$
Y^{u,\nu}=y_1^{u,\nu}e^{i\eta}\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix}+y_2^{u,\nu}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}+y_3^{u,\nu}e^{i\eta'}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

The right-handed (RH) neutrino mass M^R has the same structure as the Y^{ν} .

• **Natural** understanding of the hierarchical Yukawa couplings:

$$
y_u \simeq v_1^2/M_{\text{GUT}}^2 \simeq 10^{-6}
$$
 $y_c \simeq v_2^2/M_{\text{GUT}}^2 \simeq 10^{-2}$ $y_t \simeq v_3^2/M_{\text{GUT}}^2 \simeq 1$

RH neutrino parameters

$$
M_1^R \simeq 10^7 {\rm GeV}
$$
 $M_2^R \simeq 10^{11} {\rm GeV}$ $M_3^R \simeq 10^{13} {\rm GeV}$

Down-type quarks and charged leptons couple to a second Higgs H_{10}^d , with a new mixed term involving $Y_{12} \sim \langle \phi_1 \rangle \langle \phi_2 \rangle^T$

$$
Y^{d,e} = y_{12}^{d,e} e^{i\frac{\eta}{2}}\begin{pmatrix} 0 & 1 & 1 \\ 1 & 4 & 2 \\ 1 & 2 & 0 \end{pmatrix} + y_{2}^{d,e} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + y_{3}^{d,e} e^{i\eta'} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + y^{P} e^{i\gamma} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}
$$

Down-type quarks and charged leptons couple to a second Higgs H_{10}^d , with a new mixed term involving $Y_{12} \sim \langle \phi_1 \rangle \langle \phi_2 \rangle^T$

$$
Y^{d,e} = y_{12}^{d,e} e^{i\frac{\eta}{2}}\begin{pmatrix} 0 & 1 & 1 \\ 1 & 4 & 2 \\ 1 & 2 & 0 \end{pmatrix} + y_{2}^{d,e} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + y_{3}^{d,e} e^{i\eta'} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + y^{P} e^{i\gamma} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}
$$

• It leads to a **milder hierarchy** in the down and charged lepton sectors.

$$
y_{12}^{d,e} \simeq \cos \beta \frac{v_1 v_2}{M_{\text{GUT}}^2} \simeq 10^{-5} \quad y_2^{d,e} \simeq \cos \beta \frac{v_2^2}{M_{\text{GUT}}^2} \simeq 10^{-2} \quad y_3^{d,e} \simeq \cos \beta \frac{v_3^2}{M_{\text{GUT}}^2} \simeq 1
$$

Down-type quarks and charged leptons couple to a second Higgs H_{10}^d , with a new mixed term involving $Y_{12} \sim \langle \phi_1 \rangle \langle \phi_2 \rangle^T$

$$
Y^{d,e} = y_{12}^{d,e} e^{i\frac{\eta}{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 4 & 2 \\ 1 & 2 & 0 \end{pmatrix} + y_2^{d,e} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + y_3^{d,e} e^{i\eta'} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + y^P e^{i\gamma} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}
$$

• It leads to a **milder hierarchy** in the down and charged lepton sectors.

$$
y_{12}^{d,e} \simeq \cos \beta \frac{v_1 v_2}{M_{\text{GUT}}^2} \simeq 10^{-5} \quad y_2^{d,e} \simeq \cos \beta \frac{v_2^2}{M_{\text{GUT}}^2} \simeq 10^{-2} \quad y_3^{d,e} \simeq \cos \beta \frac{v_3^2}{M_{\text{GUT}}^2} \simeq 1
$$

This new term enforces a **texture zero** in the $(1,1)$ element of Y^d , giving the GST relation for the Cabbibo angle, i.e. $\vartheta_{12}^q \approx \sqrt{y_d/ys}$.

Elena Perdomo (1710.03229) [Invisibles18 Workshop](#page-0-0)

 3^{rd} September, 2018 6 / 12

• The light neutrino Majorana matrix, after **seesaw**, will also have the CSD2 structure

$$
m^{\nu} = \mu_1^{\nu} e^{i\eta} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \mu_2^{\nu} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + \mu_3^{\nu} e^{i\eta'} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

where the parameters μ_i are given by

$$
\mu_i = v_u^2 \frac{(y_i^{\nu})^2}{M_i^R}
$$

• Flavons yield to **normal hierarchy** $m_1 \ll m_2 \ll m_3$.

 χ^2 test function to find the best fit

$$
\chi^2 = \sum_{n} \left(\frac{P_n(x) - P_n^{\text{obs}}}{\sigma_n} \right)^2
$$

19 observables given by $\{\theta_{ij}^q, \delta^q, y_{u,c,t}, y_{d,s,b}, \theta_{ij}^{\ell}, \delta^l, y_{e,\mu,\tau}, \Delta m_{ij}^2\}.$

- After seesaw, **15 effective parameters** $x = \{y_i^u, y_i^d, y_i^e, y^P, \mu_i, \eta', \gamma\}.$
- The best fit found has a $\chi^2_{\nu} = \chi^2/\nu \simeq 3$ where $\nu = n n_i = 4$ d.o.f.

• Baryon Asymmetry of the Universe (BAU)

$$
\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.1 \pm 0.1) \times 10^{-10}
$$

Asymmetry can be generated through CP breaking decays of heavy RHNs into leptons, then converted into baryons through sphalerons.

The baryon asymmetry is

$$
\eta_B \simeq \sin \eta' \frac{3}{8\pi} \frac{\alpha_{sph}}{N_\gamma^{rec}} \ \kappa \left(\frac{\mu_2}{m_\star^{MSSM}}\right) \frac{\mu_3 M_2}{v^2}
$$

Using the parameters from the fit, the correct BAU is generated when

$$
M_2 \simeq 1.9 \times 10^{11} \text{ GeV}
$$

This is the natural value for the second RHN mass: the model naturally explains the origin of the BAU through N_2 leptogenesis without any need of tunning!!

Elena Perdomo (1710.03229) [Invisibles18 Workshop](#page-0-0)

Matter fields unified into a single representation $(3', 16)$ of $S_4 \times SO(10)$

- Simple: minimal field content and low-dimensional representations.
- **Natural:** matter hierarchies explained by the flavon VEVs when setting all the GUT scale parameters to be $\sim \mathcal{O}(1)$.
- Predictions: neutrino masses, normal neutrino mass ordering, CP oscillation phase $\delta^l \sim 200^\circ$.

This project has received funding/support from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 674896.

If you want to know more...

$SO(10) \times S_4$ Grand Unified Theory of flavour elusiones and Leptogenesis Southampton

arXiv:1710.03229

Francisco J. de Anda, Stephen F. King, Elena Perdomo" - persona-mentez

Motivation
Flavour problem

and la

metry imposes constraints on family and reproduces an uni-Grand Unified Theory
Unifies fermions within each funite and prevailance as and versity time relationships between predicting relationships between quark and lepton Yukawa matri-

Unified model of flavour

• We present a model with quarks and leptons unified in a single ψ representation of ${\rm SO}(40)\times {\rm S}_0$ The conceited concrete blu are wissen in the table below. We only allowweall Hings representations 10, 16 and 45.

*H*_{_{*B}*⁻¹ 1 45 2 G}</sub> 0 Separate quarks and lepton masses
2 Gives DT splitting via DW mechanism *H*_B² 1 45 2 Gives DT splitting via DW mechanism

φ_i 3² 1 0 Acquire CSD(2) vacuum alignments
 RHN mass

• The discrete symmetry \mathbb{Z}_4^R is broken at the GUT scale by the H^{B-L}_{45} **Nume** VEV to Z *R* 2 , the usual *R* parity in the MSSM.

CSD(2) flavon vacuum alignments

The Yukawa parameters are given a dynamical origin

 $\mathscr{L} \sim \frac{1}{\lambda} \phi H \phi \psi \rightarrow \frac{\langle \phi \rangle}{\lambda} H \phi \psi \rightarrow y H \phi \psi,$ $\mathcal{L} \sim \frac{1}{\lambda} \theta H \Psi \Psi \rightarrow \frac{3H}{\lambda} \Psi \Psi + \frac{1}{2} H \Psi \Psi$,
where the flavon fields break *S₄* with the CSD(2) vacuum alignment

$$
\langle \varphi_l \rangle = v_1 \begin{pmatrix} l \\ 0 \\ 0 \end{pmatrix}, \quad \langle \varphi_l \rangle = v_2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad \langle \varphi_l \rangle = v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.
$$

 $VEVs$ driven to scales with the hierarchy *v*₁ *¢*2 *v*₃ ← *M_{GUT}*.
• Bar

Yukawa matrices

 \bullet Up-type quarks and neutrinos couple to one Higgs *H*_{In}, leading to
Yukawa matrices *Y*_{*i*} ∼ $\langle \phi_i \rangle \langle \phi_j \rangle^T$ with an universal structure ¹⁰, leading to **a v** Avy

$$
Y^{n,\nu} = y_1^{n,\nu} \begin{pmatrix} 1 \ 2 \ 4 \ 0 \\ 2 \ 4 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} + y_2^{n,\nu} \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \end{pmatrix} + y_3^{n,\nu} \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \end{pmatrix}.
$$

Natural understanding of the hierarchical Yukawa couplings *y*_{*u*} ∼ *v*₁/*M*_{CUT}, *y* ∼ *v*₂/*M*_{CUT}, *y* ∼ *v*₃/*M*_{CUT}.

•Down-type quarks and charged leptons couple to a second Higgs *H*^{d}₁₂ ∼ (φ₁)^{*T*} (φ₂)^{*T*}

$$
T^{d,r}=y_{12}^{d,r}\begin{pmatrix}0&1&1\\1&4&2\\1&2&0\end{pmatrix}+y_{2}^{d,r}\begin{pmatrix}0&0&0\\0&1&1\\0&1&1\end{pmatrix}+y_{3}^{d,r}\begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}+y^{r}\begin{pmatrix}0&0&1\\0&2&0\\1&0&0\end{pmatrix}.
$$

This new term enforces a zero in the (1,1) element of *Y*^{*d*}, giving the repression [2] for the Cabbibo angle, i.e. $\vartheta_{12}^{\alpha} \approx \sqrt{\gamma_d/\gamma}$. It also CSD This new term enforces a zero in the $(1,1)$ element of Y^d , giving the leads to a milder hierarchy in the down and charged lepton sectors. [1] S. Antusch, S. F. King, C. Luhn and M. Spinrath (arXiv:1108.4278) [1] T. S.

S. Antusch, S. F. King and M. Spinrath [arXiv:1301.6764]

[3] P. Minkowski Phys. Lett. B 67 (1977) 421

Seesaw mechanism

The right-handed neutrino (RHN) mass *M^R* has the same structure as *Y* ν . The light neutrino mass matrix is obtained by the type-I seesaw mechanism [3,4] and will also have the CSD(2) structure

$$
m^Y = \mu_1^Y \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \mu_2^Y \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + \mu_3^Y \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

The parameters $μ$ _{*i*} are given in terms of the parameters *y_i* and *M_i*^R_{*I*} simply by (*y ⁱ*)²

$$
\mu_i = v_i^2 \frac{v_i v_i}{M^2}
$$

M^R i The flavons yield a light neutrino mass matrix *m* ν , where the normal hierarchy $m_1 \ll m_2 \ll m_3$ after seesaw is due to the very hierarchical RHN masses.

Numerical fit

The model accurately fits all available quark and lepton data, with 15 input parameters to fit 19 data points and a reduced $\chi^2_\nu \approx 3.$ It predicts normal neutrino hierarchy and a *CP* phase δ *l* ί σε προ *^l* [∼] ²⁰⁰

The neutrino masses are also predicted
*m*₁ ≈ 10.94 meV, *m*₂ ≈ 13.95 meV, *m*₃ ≈ 51.42 meV. The model predicts significant deviation from both zero and maxim

N² Leptogenesis

•Baryon Asymmetry of the Universe (BAU)

 $n_{\rm B} = \frac{n_{\rm B}-n_{\rm B}}{n_{\rm y}} = (6.1\pm0.1)\times10^{-10}$

```
•Leptogenesis generated mainly by the decays of the second RHN
                      •Asymmetry generated through CP breaking decays of heavy RHNs
into leptons, then converted into baryons through sphalerons [5].
                      "N- leptogenesis".
                     •Using the parameters from the fit, the correct BAU is generated when
```
 $M_2 \simeq 1.9 \times 10^{11} \text{ GeV},$

natural expected value for the second RHN mass.

Acknowledgements

Conclusion

Elena Perdomo (1710.03229)

Example 2 in the state of the state of

[4] T. Yanagida [hep-ph/9809459]

 3^{rd} September, 2018 12 / 12