

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

ARNOLD SOMMERFELD CENTER FOR THEORETICAL PHYSICS

Neutrinos and the Gravitational θ-Term

A Low-Energy Solution to the Neutrino Mass Problem

Lena Funcke In collaboration with Gia Dvali

Invisibles18 Workshop, KIT

Lena Funcke (MPP and LMU) [Neutrinos and the Gravitational](#page-60-0) θ-Term 3 September 2018 1/10

 \blacktriangleright QCD: θ-term $\mathcal{L}_{\text{QCD}} \supset \theta G\tilde{G}$ is made physical by non-perturbative effects [1].

[1] Hooft (1976); Witten (1979); Veneziano (1979).

Quantity QCD with $3q$ Flavor symmetry breaking $U(3)_V \times U(3)_A \rightarrow U(3)_V$

[1] Hooft (1976); Witten (1979); Veneziano (1979).

[1] Hooft (1976); Witten (1979); Veneziano (1979).

► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].

[1] Hooft (1976); Witten (1979); Veneziano (1979). [4] Adler (1969); Bell, Jackiw (1969).

► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].

[1] Hooft (1976); Witten (1979); Veneziano (1979).

[4] Adler (1969); Bell, Jackiw (1969). [5] Shifman, Vainshtein, Zakharov (1980).

- ► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].
- **►** Gravity: θ -term $\mathcal{L}_G \supset \theta_G R \tilde{R}$ exists [2], physicality is unknown \rightarrow assumption!

[1] Hooft (1976); Witten (1979); Veneziano (1979). [2] Deser, Duff, Isham (1980).

[4] Adler (1969); Bell, Jackiw (1969). [5] Shifman, Vainshtein, Zakharov (1980).

- ► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].
- **►** Gravity: θ -term $\mathcal{L}_G \supset \theta_G R \tilde{R}$ exists [2], physicality is unknown \rightarrow assumption!
- \triangleright Similarities: chiral anomalies, topology structures, massive pseudoscalars [3].

[1] Hooft (1976); Witten (1979); Veneziano (1979). [2] Deser, Duff, Isham (1980).

- [3] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).
- [4] Adler (1969); Bell, Jackiw (1969). [5] Shifman, Vainshtein, Zakharov (1980).

- ► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].
- **►** Gravity: θ -term $\mathcal{L}_G \supset \theta_G R \tilde{R}$ exists [2], physicality is unknown \rightarrow assumption!
- \triangleright Similarities: chiral anomalies, topology structures, massive pseudoscalars [3].

[1] Hooft (1976); Witten (1979); Veneziano (1979). [2] Deser, Duff, Isham (1980).

- [3] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).
- [4] Adler (1969); Bell, Jackiw (1969). [5] Shifman, Vainshtein, Zakharov (1980).

- ► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].
- **►** Gravity: θ -term $\mathcal{L}_G \supset \theta_G R \tilde{R}$ exists [2], physicality is unknown \rightarrow assumption!
- \triangleright Similarities: chiral anomalies, topology structures, massive pseudoscalars [3].

[1] Hooft (1976); Witten (1979); Veneziano (1979). [2] Deser, Duff, Isham (1980).

[3] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).

[4] Adler (1969); Bell, Jackiw (1969). [5] Shifman, Vainshtein, Zakharov (1980). [7] Dvali, LF (2016a).

- ► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].
- **►** Gravity: θ -term $\mathcal{L}_G \supset \theta_G R \tilde{R}$ exists [2], physicality is unknown \rightarrow assumption!
- \triangleright Similarities: chiral anomalies, topology structures, massive pseudoscalars [3].

[1] Hooft (1976); Witten (1979); Veneziano (1979). [2] Deser, Duff, Isham (1980).

[3] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).

[4] Adler (1969); Bell, Jackiw (1969). [5] Shifman, Vainshtein, Zakharov (1980). [7] Dvali, LF (2016a).

- ► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].
- **►** Gravity: θ -term $\mathcal{L}_G \supset \theta_G R \tilde{R}$ exists [2], physicality is unknown \rightarrow assumption!
- \triangleright Similarities: chiral anomalies, topology structures, massive pseudoscalars [3].

[1] Hooft (1976); Witten (1979); Veneziano (1979). [2] Deser, Duff, Isham (1980).

[3] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).

[5] Shifman, Vainshtein, Zakharov (1980). [6] Delbourgo, Salam (1972); Eguchi, Freund (1976). [7] Dvali, LF (2016a).

- ► QCD: θ -term $\mathcal{L}_{\text{QCD}} \supset \theta G \tilde{G}$ is made physical by non-perturbative effects [1].
- **►** Gravity: θ -term $\mathcal{L}_G \supset \theta_G R \tilde{R}$ exists [2], physicality is unknown \rightarrow assumption!
- \triangleright Similarities: chiral anomalies, topology structures, massive pseudoscalars [3].

[1] Hooft (1976); Witten (1979); Veneziano (1979). [2] Deser, Duff, Isham (1980).

- [3] Dvali (2005); Dvali, Jackiw, Pi (2006); Dvali, Folkerts, Franca (2014).
- [6] Delbourgo, Salam (1972); Eguchi, Freund (1976). [7] Dvali, LF (2016a).

Non-perturbative quantum gravitational effects.

- \triangleright Small effective neutrino mass generation through non-perturbative coupling to neutrino condensate.
- \triangleright Coupling analogous to 't Hooft vertex in QCD [8].

[8] 't Hooft (1986).

- \triangleright Small effective neutrino mass generation through non-perturbative coupling to neutrino condensate.
- \triangleright Coupling analogous to 't Hooft vertex in QCD [8].
- \blacktriangleright Effective potential determines neutrino mass hierarchy.

- \triangleright Small effective neutrino mass generation through non-perturbative coupling to neutrino condensate.
- \triangleright Coupling analogous to 't Hooft vertex in QCD [8].
- \blacktriangleright Effective potential determines neutrino mass hierarchy.
- \blacktriangleright Independent of Dirac or Majorana nature of neutrinos.

Constraints: Symmetry Breaking Scale Λ_G

Assumption: condensate $|\langle \bar{\nu}\nu \rangle| =$ scale $\Lambda_G^3 =$ temperature $\,^3_{\chi \rm SB}$.

Constraints: Symmetry Breaking Scale Λ_G

Assumption: condensate $|\langle \bar{\nu}\nu \rangle| =$ scale $\Lambda_G^3 =$ temperature $\,^3_{\chi \rm SB}$.

 Λ_G

Constraints: Symmetry Breaking Scale Λ_G

Assumption: condensate $|\langle \bar{\nu}\nu \rangle| =$ scale $\Lambda_G^3 =$ temperature $\,^3_{\chi \rm SB}$.

 $\Lambda_G \ll \Lambda_{\rm QCD}$

Constraints: Symmetry Breaking Scale Λ_G

Assumption: condensate $|\langle \bar{\nu}\nu \rangle| =$ scale $\Lambda_G^3 =$ temperature $\,^3_{\chi \rm SB}$.

[9] Archidiacono, Hannestad (2014). Image credits: NASA / WMAP Science Team [http://map.gsfc.nasa.gov/]

Constraints: Symmetry Breaking Scale Λ_G

Assumption: condensate $|\langle \bar{\nu}\nu \rangle| =$ scale $\Lambda_G^3 =$ temperature $\,^3_{\chi \rm SB}$.

[9] Archidiacono, Hannestad (2014). [10] Olive et al. (Particle Data Group) (2014). Image credits: NASA / WMAP Science Team [http://map.gsfc.nasa.gov/] and Patterson (2005).

Constraints: Symmetry Breaking Scale Λ_G

Assumption: condensate $|\langle \bar{\nu}\nu \rangle| =$ scale $\Lambda_G^3 =$ temperature $\,^3_{\chi \rm SB}$.

\rightarrow Neutrino vacuum condensate $\langle \bar{\nu} \nu \rangle$ on dark energy scale.

[9] Archidiacono, Hannestad (2014). [10] Olive et al. (Particle Data Group) (2014). Image credits: NASA / WMAP Science Team [http://map.gsfc.nasa.gov/] and Patterson (2005).

Invalidity of cosmological neutrino mass bound.

 \blacktriangleright Relic neutrinos massless until late phase transition at $T_{\chi {\rm SB}} \lesssim \Lambda_G$.

Invalidity of cosmological neutrino mass bound.

- **I** Relic neutrinos massless until late phase transition at $T_{\chi \text{SB}} \lesssim \Lambda_G$.
- ▶ Neutrinos decay & (partially) annihilate $\rightarrow \sum_i m_{\nu_i} \not\lesssim 0.12$ eV [11].

[11] Aghanim et al. (Planck) (2018).

Invalidity of cosmological neutrino mass bound.

- \blacktriangleright Relic neutrinos massless until late phase transition at $T_{\chi {\rm SB}} \lesssim \Lambda_G$.
- ► Neutrinos decay & (partially) annihilate $\rightarrow \sum_i m_{\nu_i} \not\lesssim 0.12$ eV [11].

 \Rightarrow Masses $m_{\nu_e} \lesssim 2.2$ eV [12] still allowed, measurable at

[11] Aghanim et al. (Planck) (2018). [12] Drexlin et al. (2013). Image credit: KATRIN [http://www.ikp.kit.edu/].

Invalidity of cosmological neutrino mass bound.

- **I** Relic neutrinos massless until late phase transition at $T_{\rm vSB} \le \Lambda_G$.
- ► Neutrinos decay & (partially) annihilate $\rightarrow \sum_i m_{\nu_i} \not\lesssim 0.12$ eV [11].

 \Rightarrow Masses $m_{\nu_e} \lesssim 2.2$ eV [12] still allowed, measurable at

Other cosmological parameters? Ongoing numerical studies.

[11] Aghanim et al. (Planck) (2018). [12] Drexlin et al. (2013). Image credit: KATRIN [http://www.ikp.kit.edu/]. Plots: Lorenz, Calabrese, LF, Hannestad (2018), in progress.

Invalidity of cosmological neutrino mass bound.

- **I** Relic neutrinos massless until late phase transition at $T_{\rm vSB} \le \Lambda_G$.
- ► Neutrinos decay & (partially) annihilate $\rightarrow \sum_i m_{\nu_i} \not\lesssim 0.12$ eV [11].

 \Rightarrow Masses $m_{\nu_e} \lesssim 2.2$ eV [12] still allowed, measurable at

Other cosmological parameters? Ongoing numerical studies.

[11] Aghanim et al. (Planck) (2018). [12] Drexlin et al. (2013).

Image credit: KATRIN [http://www.ikp.kit.edu/]. Plots: Lorenz, Calabrese, LF, Hannestad (2018), in progress.

Relic(s) and sterile neutrinos:

Relic neutrino clustering on Earth [13]?

PTOLEMY

[13] LF, Mirzhagoli (2018), in progress. Image credits: Betts et al. (2013).

Relic(s) and sterile neutrinos:

- \blacktriangleright Relic neutrino clustering on Earth [13]?
- ▶ Cosmic topological defects: neutrino skymrions, strings, domain walls [14].

PTOLEMY

[13] LF, Mirzhagoli (2018), in progress. [14] LF, Vilenkin (2018), in progress. Image credits: Betts et al. (2013).

Relic(s) and sterile neutrinos:

- \blacktriangleright Relic neutrino clustering on Earth [13]?
- ▶ Cosmic topological defects: neutrino skymrions, strings, domain walls [14].
- \triangleright Resolution of cosmological tensions of hypothetical light sterile neutrinos.

PTOLEMY

[13] LF, Mirzhagoli (2018), in progress. [14] LF, Vilenkin (2018), in progress. Image credits: Betts et al. (2013).

Lena Funcke (MPP and LMU) [Neutrinos and the Gravitational](#page-0-0) θ-Term 3 September 2018 8 / 10

Relic(s) and sterile neutrinos:

- \triangleright Relic neutrino clustering on Earth [13]?
- \triangleright Cosmic topological defects: neutrino skymrions, strings, domain walls [14].
- \triangleright Resolution of cosmological tensions of hypothetical light sterile neutrinos.

PTOLEMY

Astrophysical neutrinos:

 \blacktriangleright Enhanced neutrino decays: Majorana vs. Dirac in future IceCube data [15]?

[13] LF, Mirzhagoli (2018), in progress. [14] LF, Vilenkin (2018), in progress. [15] LF, Raffelt, Vitagliano (2018), in progress. Image credits: Betts et al. (2013). Beiser, IceCube/NSF [http://gallery.icecube.wisc.edu/]

Relic(s) and sterile neutrinos:

- \triangleright Relic neutrino clustering on Earth [13]?
- \triangleright Cosmic topological defects: neutrino skymrions, strings, domain walls [14].
- \triangleright Resolution of cosmological tensions of hypothetical light sterile neutrinos.

PTOLEMY

Astrophysical neutrinos:

- \blacktriangleright Enhanced neutrino decays: Majorana vs. Dirac in future IceCube data [15]?
- \triangleright Modified original SN neutrino spectra.

IceCube

[13] LF, Mirzhagoli (2018), in progress. [14] LF, Vilenkin (2018), in progress. [15] LF, Raffelt, Vitagliano (2018), in progress. Image credits: Betts et al. (2013). Beiser, IceCube/NSF [http://gallery.icecube.wisc.edu/]

Lena Funcke (MPP and LMU) [Neutrinos and the Gravitational](#page-0-0) θ-Term 3 September 2018 8/10

Frontiers of gravity measurements:

 \triangleright Different polarization intensities of gravitational waves [16].

[16] Jackiw, Pi (2003). Image credits: The SXS Project [https://www.ligo.caltech.edu/]

Frontiers of gravity measurements:

- \triangleright Different polarization intensities of gravitational waves [16].
- \triangleright New attractive gravity-competing short-distance force [17].

[16] Jackiw, Pi (2003). [17] Dvali, LF (2016b), "Domestic Axion" solution to strong CP problem. Image credits: The SXS Project [https://www.ligo.caltech.edu/]

Frontiers of gravity measurements:

- \triangleright Different polarization intensities of gravitational waves [16].
- \triangleright New attractive gravity-competing short-distance force [17].

Frontiers of new particle detection:

If "Shining light through walls" with axion-like bosons $\eta_{\nu}, \phi_{\kappa}$.

[16] Jackiw, Pi (2003). [17] Dvali, LF (2016b), "Domestic Axion" solution to strong CP problem. Image credits: The SXS Project [https://www.ligo.caltech.edu/] and Redondo, Ringwald (2010).

Frontiers of gravity measurements:

- \triangleright Different polarization intensities of gravitational waves [16].
- \triangleright New attractive gravity-competing short-distance force [17].

Frontiers of new particle detection:

- **If** "Shining light through walls" with axion-like bosons $\eta_{\nu}, \phi_{\kappa}$.
- \blacktriangleright Flavor-violating processes within reach of LHC, Mu2e, etc.?

[16] Jackiw, Pi (2003). [17] Dvali, LF (2016b), "Domestic Axion" solution to strong CP problem. Image credits: The SXS Project [https://www.ligo.caltech.edu/] and Redondo, Ringwald (2010).

Assumption: pure gravity contains physical θ -term.

Thanks for listening!

Thanks for listening! \mathbb{Z} \mathbb{H} Do you have any questions?