# Non-standard Neutrino Interactions and Robustness of Neutrino Parameters in Oscillation Experiments

Invisibles18 Workshop, Karlsruhe

#### Ivan Esteban

Institute of Cosmos Sciences (ICCUB), University of Barcelona

In collaboration with M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado Based on arXiv:1805.04530 [hep-ph]

4<sup>th</sup> September 2018





### Introduction



We only measure leptonic mixing angles and neutrino mass differences *indirectly*.

How robust is the picture against New Physics?

How much information on NP do neutrino oscillation experiments give us?

#### Framework

We consider neutral current NSI:

$$\mathcal{L} = -2\sqrt{2}G_{\mathsf{F}}\sum_{f,\alpha,\beta}\varepsilon^{f}_{\alpha\beta}(\bar{\nu}_{\alpha}\gamma_{\mu}\mathsf{P}_{\mathsf{L}}\nu_{\beta})(\bar{f}\gamma^{\mu}f),$$

which modify the neutrino matter potential

$$H_{\text{mat}} = \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee}(x) & \varepsilon_{e\mu}(x) & \varepsilon_{e\tau}(x) \\ \varepsilon_{e\mu}^*(x) & \varepsilon_{\mu\mu}(x) & \varepsilon_{\mu\tau}(x) \\ \varepsilon_{e\tau}^*(x) & \varepsilon_{\mu\tau}^*(x) & \varepsilon_{\tau\tau}(x) \end{pmatrix}$$

٠

Here,  $\varepsilon_{\alpha\beta}(x) = \varepsilon_{\alpha\beta}^{e} + \varepsilon_{\alpha\beta}^{p} + \frac{N_{n}(x)}{N_{e}(x)}\varepsilon_{\alpha\beta}^{n}$ . We consider  $\varepsilon_{\alpha\beta}^{p} \propto \varepsilon_{\alpha\beta}^{n}$ .

#### Degeneracies



P. Coloma and T. Schwetz, "Generalized mass ordering degeneracy in neutrino oscillation experiments", Phys. Rev. D 94 (2016) no.5, 055005 [arXiv:1604.05772 [hep-ph]].
D. V. Forero and P. Huber, "Hints for leptonic CP violation or New Physics?", Phys. Rev. Lett. 117 (2016) no.3, 031801 [arXiv:1601.03736 [hep-ph]].

#### Results

#### Robustness of oscillation parameters



Dotted: 90% CL,  $3\sigma$ . Solid:  $1\sigma$ , 90%,  $2\sigma$ , 99%,  $3\sigma$ .

#### Results

#### Matter potential in LBL experiments



Light blue: + COHERENT.

#### Implications





### Conclusions



- The combination of experiments with different baselines, matter properties, energies and oscillation channels makes the standard picture *very robust*, except for  $\theta_{12}$ .
- Marginalization over admixtures of NSI with protons and neutrons allows the LMA-D solution within  $\sim 2\sigma$ .
- Even though T2K loses sensitivity ( $\sim 2$  units in  $\chi^2$ ) to CP violation and the mass ordering, adding other experiments recovers the standard picture.



# Backup

#### We allow admixtures of up and down quark NSIs

$$\begin{aligned} \varepsilon^{\mathbf{e}}_{\alpha\beta} &= \mathbf{0} \\ \varepsilon^{\mathbf{p}}_{\alpha\beta} &= \varepsilon^{\eta}_{\alpha\beta}\sqrt{5}\cos\eta \\ \varepsilon^{\mathbf{n}}_{\alpha\beta} &= \varepsilon^{\eta}_{\alpha\beta}\sqrt{5}\sin\eta \end{aligned}$$

and so the combination that LBL experiments see is

$$\varepsilon^{\oplus}_{\alpha\beta} = \sqrt{5}\varepsilon^{\eta}_{\alpha\beta}(\cos\eta + Y_n\sin\eta),$$

that vanishes for  $\eta \sim -44^{\circ}.$ 



# Backup

8 / 8

