Status of the eV Sterile Neutrino Oscillations

Alvaro Hernandez Cabezudo

[arXiv:1803.10661]

In collaboration with: Mona Dentler, Joachim Kopp, Pedro Machado, Michele Maltoni, Ivan Martinez-Soler and Thomas Schwetz.

karlsruher Institut für Technologie

alvaro.cabezudo@kit.edu

September 3, 2018

Neutrino Oscillation Anomalies

Oscillations in a 3ν framework

Massive Neutrinos \Rightarrow

$$U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
$$\Delta m_{sol}^{2} , \ \Delta m_{atm}^{2}$$

Neutrino Oscillation Anomalies

Oscillations in a 3ν framework

Massive Neutrinos \Rightarrow

$$U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
$$\Delta m_{sol}^{2} , \ \Delta m_{atm}^{2}$$

Anomalies

Reactor Anomaly

Deficit of measured events with respect to the theoretical predictions.

< 🗗 🕨

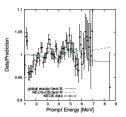
Reactor Anomaly

Deficit of measured events with respect to the theoretical predictions.

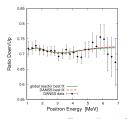
VS

New Physics Sterile Oscillation Nuclear Physics Flux predictions

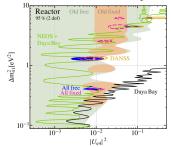
Reactor Anomaly

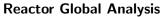

Deficit of measured events with respect to the theoretical predictions.

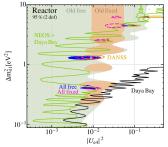
New PhysicsVSNuclear PhysicsSterile OscillationFlux predictions


New experimental data

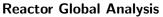
Ratios of measured spectra, independent of flux predictions

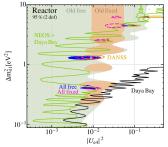






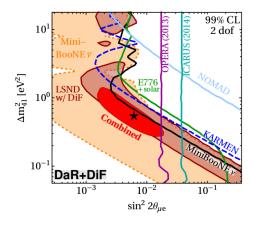
Reactor Global Analysis


< (T) > <



Analysis	Δm_{41}^2 [eV ²]	$ U_{e4}^2 $	χ^2_{min}/dof	$\Delta \chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84 - 2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233 - 5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ

< 17 > <


Analysis	Δm_{41}^2 [eV ²]	$ U_{e4}^{2} $	χ^2_{min}/dof	$\Delta \chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84 - 2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233 - 5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ

Reactor anomaly confirmed by ratios of measured spectra independently of flux predictions

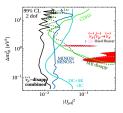
Alvaro Hernandez Cabezudo (KIT) Status of the eV Sterile Neutrino Oscillations

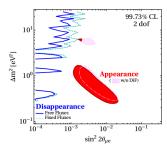
$(\vec{\nu}_{\mu}) \rightarrow (\vec{\nu}_{e})$ Appearance


LSND & MiniBooNE Anomalies Global $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}$ Analysis

 $\sin^2 2\theta_{\mu e} \propto |U_{\mu 4}|^2 |U_{e4}|^2$

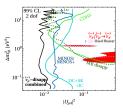
$(\stackrel{\frown}{\nu}_{\mu} \rightarrow (\stackrel{\frown}{\nu}_{e} \text{ vs } \stackrel{\frown}{\nu}_{\mu} \rightarrow \stackrel{\frown}{\nu}_{\mu}$ Tension

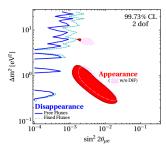

Global $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$ Analysis \Rightarrow


< 67 ▶

$(\stackrel{\frown}{\nu}_{\mu} \rightarrow (\stackrel{\frown}{\nu}_{e} \text{ vs } \stackrel{\frown}{\nu}_{\mu} \rightarrow \stackrel{\frown}{\nu}_{\mu}$ Tension

Global $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{\mu}$ Analysis \Rightarrow


$$(\overline{\nu}_{\mu}) \rightarrow (\overline{\nu}_{e})$$
 vs $(\overline{\nu}_{\mu}) \rightarrow (\overline{\nu}_{\mu})$ Tension


A 🖓

$(\vec{\nu}_{\mu} \rightarrow \vec{\nu}_{e} \text{ vs } \vec{\nu}_{\mu} \rightarrow \vec{\nu}_{\mu} \text{ Tension}$

Global ${\stackrel{(-)}{\nu}}_{\mu} \rightarrow {\stackrel{(-)}{\nu}}_{\mu}$ Analysis \Rightarrow

$$(\overline{\nu}_{\mu}) \rightarrow (\overline{\nu}_{e})$$
 vs $(\overline{\nu}_{\mu}) \rightarrow (\overline{\nu}_{\mu})$ Tension

Analysis	$\Delta \chi^2_{\rm app-disapp}$	p-value
Global	29.6	$3.7 imes 10^{-7}$
w/o Reactors	20.3	$3.9 imes 10^{-5}$

The tension is independent of the Reactor Anomaly

Global Analysis of the Sterile Neutrino Oscillations in the 3 + 1 ν framework.

This project has received funding/support from the European Unions Horizon 2020 research and innovation programme under

the Marie Sklodowska-Curie grant agreement No 674896.

< 🗗 🕨 🔸

Global Analysis of the Sterile Neutrino Oscillations in the $3+1\,\nu$ framework.

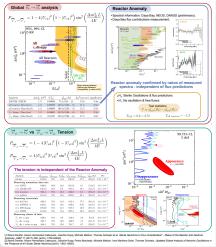
• Reactor anomaly is confirmed at the level of 2.9σ independently of the flux predictions.

This project has received funding/support from the European Unions Horizon 2020 research and innovation programme under

the Marie Sklodowska-Curie grant agreement No 674896.

Global Analysis of the Sterile Neutrino Oscillations in the $3+1\,\nu$ framework.

- Reactor anomaly is confirmed at the level of 2.9σ independently of the flux predictions.
- The LNSD anomaly, found in the channel $\overset{(-)}{\nu}_{\mu} \rightarrow \overset{(-)}{\nu}_{e}$, is in big tension with the constrains coming from $\overset{(-)}{\nu}_{\mu} \rightarrow \overset{(-)}{\nu}_{\mu}$. This result is independent of the reactor anomaly.


This project has received funding/support from the European Unions Horizon 2020 research and innovation programme under

the Marie Sklodowska-Curie grant agreement No 674896.

Status of the eV Sterile Neutrino Oscillations

Mona Dentler, <u>Alvaro Hernandez-Cabezudo</u>*, Joachim Kopp, Pedro Machado, Michele Maltoni, Ivan Martinez-Soler, Thomas Schwetz "www.cabezudogkit.edu

KIT - The Research University in the Helmholtz Association

イロト 不得 トイヨト イヨト