

NEUTRINOLESS DBD EXPERIMENTS

Chiara Brofferio, Università di Milano Bicocca and INFN (Italy)

Karlsruhe, Sept 4th 2018

Neutrinoless Double Beta Decay Experiments

A VERY UNUSUAL REVIEW...

- Short Intro with best Physics Results
- Open Questions
- Controversial Issues
- Impact or Input on/from other fields

Neutrino-less Double Beta Decay: a short intro...

To date, $0\nu\beta\beta$ is the only viable option to show that neutrinos are Majorana particles (v = v)

Experimental observation of neutrino-less double beta decay will...

3

Establish the violation of lepton number in particle physics Shed light on the mass generation mechanisms and the smallness of neutrino masses Open a window to understand matter dominance in the universe Provide information on the size and pattern of neutrino masses

Caveat In order to extract the information on the neutrino mass, it is necessary to pass through atomic and nuclear physics

$$\left(t_{1/2}^{0\nu}\right)^{-1} = G_{0\nu} \cdot |M_{0\nu}|^2 \cdot \left|\frac{m_{\beta\beta}}{m_e}\right|^2$$

Experimental search for $0\nu\beta\beta$

detection: energy (track) of the 2 emitted e⁻

- \Box monochromatic peak at $Q_{\beta\beta}$
- □ smearing due to finite energy resolution
- observable: decay half-life of the isotope, t^{0v}_{1/2}
 in the case of a peak in the energy spectrum

$$t_{_{1/2}}^{_{0\nu}} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{N_{\beta\beta}}{N_{\text{peak}}} \qquad \left(\frac{\delta t_{_{1/2}}^{_{0\nu}}}{t_{_{1/2}}^{_{0\nu}}} = \frac{\delta N_{\text{peak}}}{N_{\text{peak}}}\right)$$

□ if no peak is detected, the sensitivity corresponds to the maximum signal that can be hidden by the background fluctuations
$$n_{\rm B} = \sqrt{MTB\Delta}$$

$$S_{1/2}^{0v} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{n_{\beta\beta}}{n_{\sigma} \cdot n_{\beta}} = \ln 2 \cdot \varepsilon \cdot \frac{1}{n_{\sigma}} \cdot \frac{x \eta N_{A}}{\mathcal{M}_{A}} \cdot \sqrt{\frac{M T}{B \Delta}}$$

 $(M = \text{detector mass} \quad T = \text{measuring time} \quad B = \text{background level} \quad \Delta = \text{energy resolution})$

4

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Detector requirements

- good energy resolution
 - \Box only protection against $2\nu\beta\beta$ spectrum tail

$$\Box R_{0\nu/2\nu} \propto \left(\frac{Q_{\beta\beta}}{\Delta}\right)^6 \frac{t_{1/2}^{2\nu}}{t_{1/2}^{0\nu}}$$

- very low background
 - underground location + shielding
 - radio-pure materials for detector and surrounding parts

 $((10^9 - 10^{10}) \text{ yr from natural chains } vs. > 10^{25} \text{ yr of } 0\nu\beta\beta)$

5

- analysis rejection techniques
- large isotope mass
 - present: some tens up to hundreds of kg
 - □ tonnes required to cover the IH region

PoS (GSSI2014), 004 (2015)

 E/Q_{BB}

It is up to the experimentalists to choose which aspect to privilege in order to get the best sensitivity

Present sensitivity

Effective Majorana mass

 $m_{\beta\beta} \equiv \left| \sum_{i} U_{ei}^{2} m_{i} \right| = \left| e^{i\xi_{1}} \cos^{2} \theta_{12} \cos^{2} \theta_{13} m_{1} + e^{i\xi_{2}} \cos^{2} \theta_{13} \sin^{2} \theta_{12} m_{2} + \sin^{2} \theta_{13} m_{3} \right|$

Comparison of the (future) experiments

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

A crucial issue: background suppression

• recall:
$$S_{1/2}^{0\nu} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{n_{\beta\beta}}{n_{\sigma} \cdot n_{\beta}} = \ln 2 \cdot \varepsilon \cdot \frac{1}{n_{\sigma}} \cdot \frac{x \eta N_{A}}{\mathcal{M}_{A}} \cdot \sqrt{\frac{M T}{B \Delta}}$$

■ when *B* is sufficiently low → **zero background condition**

 \Box transition region in between: $M T B \Delta = O(1)$ (no expected events in the ROI)

$$S_{1/2,0B}^{0v} = \ln 2 \cdot \varepsilon \cdot \frac{x \eta N_A}{\mathcal{M}_A} \cdot \frac{M T}{N_S}$$

max n. of counts
 compatible with 0 bkg

 \Box the sensitivities scales linearly with the exposure!

The zero bkg condition depends on *M*: the larger the detector mass, the more strict the request on the background

8

 $\hfill\square$ the same bkg level can suffice for a kg-size experiment, but not for a tonne-size one

Zero Background Condition? The GERDA case

Sensitivity or Discovery Potential? The GERDA - LEGEND case

$2\nu\beta\beta$: a (searched) signal, a MC test, a (major?) bkg Result of 2vßß decay (2016)

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Choice of the isotope

- $Q_{\beta\beta} \rightarrow \text{influences the bkg}$
 - \Box 2.6 (3.3) MeV end-point of main γ s (β s)
 - avoid radioactivity peak position
 obs. suitability depends on detector features
- high isotopic abundance
 - ease of material enrichment (technologically + economically)
- availability of the isotope
 - \Box tonnes required for future $0\nu\beta\beta$ experiments
 - \rightarrow high cost + large procurement time
- compatibility with a detection technique

Technological Requirements

An example: ultrapure materials

What has been learned in a field/experiment is utilized in other applications

14

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Choice of the isotope: theoretical side

In principle, isotopes with the best Nuclear Factor of Merit $(G_{0_V} \cdot |M_{0_V}|^2)$ should be favoured

A surprising inverse correlation has been observed between (specific) phase space and the square of the nuclear matrix element.

Constraints from oscillations: $m_{\beta\beta}$ vs m_{lightest}

Since
$$(t_{1/2}^{0\nu})^{-1} = G_{0\nu} \cdot |M_{0\nu}|^2 \cdot \left|\frac{m_{\beta\beta}}{m_e}\right|^2$$

you can put constraints on the half-life trough constraints on $m_{\beta\beta}$

- it is possible to put a first series of constraints on m_{ββ}
 - $m_{\beta\beta}^{\max} = \sum_{i=1}^{3} |U_{\alpha i}^{\beta}| m_{i}$ $m_{\beta\beta}^{\min} = \max \left\{ 2 |U_{\alpha i}^{\beta}| m_{i} m_{\beta\beta}^{\max}, 0 \right\}$ i = 1, 2, 3
- $\xi_{1,2}$ are left free

Constraints from cosmology: $m_{\beta\beta}$ vs Σ

• **Σ** < 140 meV (95% C.L.) by combining:

Lyα-forest from BOSS + CMB data from Planck + BAO data from BOSS (limits within the ΛCDM model)

At the 1σ level, the IO is excluded, as (recently) claimed also from oscillations

Implications for the $0\nu\beta\beta$ search

Depending on the ordering and on the C.L. we want to consider, $m_{\beta\beta}$ can at most have the following values:

Mass spectrum	Max $m_{\beta\beta}$ [meV] (C.L. on Σ)			_
	1σ	2σ	3σ	
NO	16	41	64	
IO	-	57	75	

Except for the 1σ C.L. they are still at the level reachable by the present experiments

S. Dell'Oro, S.Marcocci, M. Viel, F. Vissani, J. Cosm. Astropart. Phys. 1512, 023 (2015)

Discovery probabilities: a shot in the arm?

Global Bayesian analysis including v-oscillation, m_β m_{ββ}, Σ

- Priors:
 - Majorana phases (flat)
 - m₁ (scale invariant)

Discovery probabilities: controversial, but still interesting

Apart presenting data in a different way, the 2 groups reach quite different results

Is it a mere philosophical problem?

Will we have in a short time a hint on how to disentangle the issue?

A big Challenge for $0\nu\beta\beta$ Discovery

• a convenient parametric description of the NME can be:

$$\mathcal{M} \equiv g_A^2 \,\mathcal{M}_{0\nu} = g_A^2 \left(\mathcal{M}_{GT}^{(0\nu)} - \left(\frac{g_V}{g_A}\right)^2 \mathcal{M}_F^{(0\nu)} + \mathcal{M}_T^{(0\nu)} \right)$$

- \mathcal{M}_{0v} depends only mildly on g_A
- relatively small intrinsic error of ~ 20%
- fix the g_A renormalization to account for the differences between calculations and rates for processes "similar" to $0\nu\beta\beta$ (β , EC, $2\nu\beta\beta$)
- important effect of g_A
 - any uncertainty on its values \Rightarrow a larger uncertainty factor on \mathcal{M}

Size of g_A

- $g_A \simeq 1.27$ in weak interactions and decays of nucleons (measured)
- renormalization in nuclear medium, value appropriate for quarks
- strong quenching: $g_A < 1$
 - limited model space of the calculation
 - contribution of non-nucleonic degrees of freedom
 - renormalization of the GT operator due to two-body currents
- still unknown if the quenching in $0\nu\beta\beta$ and $2\nu\beta\beta$ is the same

$$\begin{split} g_A^{\text{quark}} &= 1 \\ g_A^{\text{nucleon}} &= 1.27 \\ g_A^{2\nu\beta\beta} &= 1.27 \cdot A^{-0.18} \\ g_A^{0\nu\beta\beta} &= ?? \end{split}$$

BUT WHY SHOULD IT BE THE SAME?

 $0\nu\beta\beta$ decay is a high-momentum transfer process (q ~ 100 MeV) \Rightarrow less quenching

(J. Menéndez, D. Gazit, A. Schwenk, PRL 107 (2011) 062501

Effect of the nuclear uncertainties: Xe case

- different NMEs / fixed g_A
 - \circ 74 meV $< m_{\beta\beta} <$ 149 meV
- different g_A / fixed NMEs
 - 74 meV < $m_{\beta\beta}$ < (149) 542 meV

 $t_{0
u}^{1/2} \propto g_A^{-4} \, {\cal M}_{0
u}^{-2}$

the main uncertainty consists in the determination of the true value of g_A

How can the experimentalists help?

0.001

50 100 150 200 250 300 350

Electron kinetic energy (keV)

More shape spectra to be measured to extract a "general law" Will not give the quenching of g_A for $0\nu\beta\beta$, but...

A by-product from forbidden β decays studies for g_A

Studying the forbidden unique and non unique β decays is extremely important also for the Reactor Anomaly

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Warning: don't stick to $m_{\beta\beta}$ metric, just go on with $T_{1/2}$! Variety of $0\nu\beta\beta$ mechanisms:

 $0\nu\beta\beta$ from any mechanism \rightarrow Majorana nature of ν would be established anyway

From: E.Lisi, Nu2018

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

BACKUP SLIDES

Experimental techniques (I)

Ge-diodes

- high-purity enriched crystals
- □ high energy resolution ($\leq 0.2\%$ @ $Q_{\beta\beta}$)
- bkg rejection by pulse shape analysis

Heidelberg-Moscow IGEX

GERDA MAJORANA Demonstrator

bolometers

- \Box high energy resolution (close to Ge-diodes)
- \Box many compounds with $0\nu\beta\beta$ emitters
- □ large source masses
- $\hfill\square$ complex cryogenic infrastructure

Cuoricino CUORE-0 AMoRE CUPID-0 CUORE

Experimental techniques (II)

- Xe liquid . . .
 - Xe easily enrichable
 - event topology reconstruction
 - □ low energy resolution (\sim 3%)
 - ...and gaseous TPCs
 - higher energy resolution
 - □ lower signal efficiency ($\sim 30\%$)

EXO-200 NEXT

- liquid scintillators loaded with 0vββ isotope
 - \square poor energy resolution (~ 10%)
 - huge amount of material
 - very low background

KamLAND-Zen SNO+

Experimental techniques (III)

tracker + calorimeter

- □ almost no limitations in the choice of the isotope
- □ large isotope masses hardly achievable
- □ low energy resolution
- event topology reconstruction

NEMO-3 SUPERNEMO

others

- □ variations on the previous, or new techniques
- numerous running prototypes and R&D projects

30

CANDLES COBRA ZICOS DCBA/MTD FLARES ...

Future players: SuperNEMO

- SuperNEMO
 - $\hfill\square$ tracker + calorimeter with 100 kg of $^{82}Se~\beta\beta$ source
 - \Box background in ROI: 5 c keV⁻¹ t⁻¹ yr⁻¹
 - \Box energy resolution: 120 keV FWHM @ $Q_{\beta\beta}$
 - \square sensitivity goal on $0\nu\beta\beta$ half-life: 10^{26} yr
- from the experience of NEMO-3
 - □ improved detector design + modularity
 - increased detector radio-putity
 - □ increased source radio-purity

Future players: SNO+

- Sudbury Neutrino Obrservatory +
 - 3.9t of tellurium dissolved in LS
 - □ background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹
 - □ energy resolution: 270 keV FWHM @ $Q_{\beta\beta}$
 - \square sensitivity goal on $0\nu\beta\beta$ half-life: $2 \cdot 10^{26}$ yr
- commissioning ongoing
 - tellurium stored underground
 - purification system under construction
 - calibration system ready
 - loading of LS forthcoming

$SNO+ 0\nu\beta\beta$ programme

- Te concentration in LS: $0.5\% \rightarrow 5\%$
- 13.3t of isotope mass

32

■ expected sensitivity: > 10²⁷ yr

Future players: NEXT-100

- Neutrino Experiment with a Xenon TPC
 - \square gas TPC with 100 kg of ¹³⁶Xe enriched xenon
 - \Box background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹
 - \Box energy resolution: 15 keV FWHM @ $Q_{\beta\beta}$
 - \square sensitivity goal on 0νββ half-life: $5 \cdot 10^{25}$ yr
- result of a strong R&D programme
 - NEXT-WHITE: final validation prototype
 - signal amplification by electroluminescence
 - □ tracking plane (SiPMs) + energy plane (PMTs)

The NEXT program

- NEXT-100 \rightarrow NEXT-250 \rightarrow NEXT-ton
- background estimate: 0.05 c keV⁻¹ t⁻¹ yr⁻¹
- final expected sensitivity: 10²⁷ yr

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Future players: LEGEND

- Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay
 - $200 \text{ kg} \rightarrow 1 \text{ t}$ of ⁷⁶Ge enriched HPGe-diodes
 - background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹
 - energy resolution: 2.5 keV FWHM @ Q_{BB}
 - sensitivity goal on $0\nu\beta\beta$ half-life: 10^{28} yr
- best of GERDA & MJD
 - □ water + LAr for low-A shielding (G)
 - LAr active veto (G)
 - radio-pure material, especially Cu (M)
 - low-noise electronics (M)

Future players: KamLAND2-Zen

- Kamioka Liquid scintillator Anti-Neutrino Detector 2 - Zero neutrino
 - 1t of ¹³⁶Xe enriched xenon dissolved in LS
 - $\hfill\square$ background in ROI: 0.01 c keV $^{-1}$ t $^{-1}$ yr $^{-1}$
 - \Box energy resolution: 50 keV FWHM @ $Q_{\beta\beta}$
 - \Box sensitivity goal on $0\nu\beta\beta$ half-life: 10^{27} yr
- from the experience of KamLAND-Zen
 - □ improved light collection (new LS & PMTs + collectors)

- □ scintillating balloon (²¹⁴Bi tagging)
- new method for LS purification
- pressurized Xe-LS

Future players: nEXO

- next Enriched Xenon Observatory
 - □ liquid TPC with 4.7 t of active ¹³⁶Xe enriched xenon
 - \Box background in ROI: 0.01 c keV⁻¹ t⁻¹ yr⁻¹
 - \Box energy resolution: 60 keV FWHM @ $Q_{\beta\beta}$
 - \square sensitivity goal on 0νββ half-life: 9 · 10²⁷ yr
- from the experience of EXO-200
 - □ 3x larger size \Rightarrow 30x mass/volume
 - improved design & components
 - increased light collection

(larger coverage + APDs \rightarrow SiPMs)

A major challenge: Ba tagging

 $\blacksquare \ ^{136}Xe \rightarrow \ ^{136}Ba^{++} + 2e^{-}$

- complete background elimination
- 40x in expected sensitivity: 4 · 10²⁸ yr

Future players: CUPID

- CUORE Upgrade with Particle IDentification (Cryogenic Underground Observatory for Rare Events)
 - □ 750 kg bolometric array of enriched crystals
 - \Box TeO₂ or Mo/Se compounds
 - \Box background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹
 - \Box energy resolution: 5 keV FWHM @ $Q_{\beta\beta}$
 - sensitivity goal on 0vββ half-life:
 5 · 10²⁷ yr
- from the experience of CUORE
 - use CUORE cryogenic infrastructure
 - □ light collection (Čerenkov / scintillation)
 - $\rightarrow \alpha vs. \beta/\gamma$ separation \Rightarrow bkg reduction

CUORE first results (Oct 2017)

Future players: PandaX-III

- Particle and astrophysical Xenon Detector III
 - $\hfill\square$ 5 gas TPCs with 200 kg of $^{136}\mbox{Xe}$ enriched xenon
 - $\hfill\square$ background in ROI: 0.01 c keV $^{-1}$ t $^{-1}$ yr $^{-1}$
 - \Box energy resolution: 75 keV FWHM @ $Q_{\beta\beta}$
 - \Box sensitivity goal on $0\nu\beta\beta$ half-life: 10^{27} yr
- 0νββ search with the PandaX programme
 - symmetric TPC instrumented with Microbulk MicroMegas
 - extensive material screening campaign
 - commissioning of prototype TPC (10 kg Xe) ongoing

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Future players: AMoRE-II

- Advanced Mo-based Rare process Experiment II
 - □ 200 kg bolometric array of ^{enr}Mo-based crystals
 - □ background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹
 - \Box energy resolution: 10 keV FWHM @ $Q_{\beta\beta}$
 - \Box sensitivity goal on $0\nu\beta\beta$ half-life: $5 \cdot 10^{26}$ yr
- result of the AMoRE programme
 - new underground laboratory: ARF
 - @ Handeok Iron Mine (1100 m overburden)
 - new cryogenic infrastructure
 - improved detector performance

AMoRE pilot

- 6 crystals of ${}^{40}Ca^{100}MoO_4$ ($\sim 1.8 \text{ kg}$)
- several upgrades in detector/system design
- FWHM @ ²⁰⁸TI: 43 keV → 10 keV