

NEUTRINOLESS DBD EXPERIMENTS Jan Conrad (U Stockholm) Laura Covi (U Göttingen) Pilar Hernandez (U Valencia) Jörg Jäckel (U Heidelberg) Mauro Mezzetto (U Padova) Local Organizing Committee (KIT) Oliver Fischer Anna Friedrich

Chiara Brofferio, Università di Milano Bicocca and INFN (Italy)

Karlsruhe, Sept 4th 2018

Neutrinoless Double Beta Decay Experiments

A VERY UNUSUAL REVIEW…

- Short Intro with best Physics Results
- Open Questions
- Controversial Issues
- Impact or Input on/from other fields

Neutrino-less Double Beta Decay: a short intro…

To date, 0 $\nu\beta\beta$ is the only viable option to show that neutrinos are Majorana particles (ν = ν)

Experimental observation of neutrino-less double beta decay will...

Establish the violation of lepton number in particle physics

Shed light on the **mass generation mechanisms** and the smallness of neutrino masses

Open a window to understand **matter dominance** in the universe

Provide information on the **size and pattern** of neutrino masses

Caveat In order to extract the information on the neutrino mass, it is necessary to pass through atomic and nuclear physics

$$
(t_{1/2}^{0\nu})^{-1} = (C_{0\nu}) \cdot |M_{0\nu}|^2 \cdot \left|\frac{m_{BB}}{m_e}\right|^2
$$

Experimental search for $0\nu\beta\beta$

detection: energy (track) of the 2 emitted e^-

- monochromatic peak at $Q_{\beta\beta}$ \Box
- smearing due to finite energy resolution \Box
- **observable**: decay half-life of the isotope, $t_{1/2}^{0\nu}$ \Box in the case of a peak in the energy spectrum

$$
t_{1/2}^{0\nu} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{N_{\beta\beta}}{N_{\text{peak}}} \qquad \left(\frac{\delta t_{1/2}^{0\nu}}{t_{1/2}^{0\nu}} = \frac{\delta N_{\text{peak}}}{N_{\text{peak}}}\right)
$$

if no peak is detected, the sensitivity corresponds to the maximum signal \Box that can be hidden by the background fluctuations $n_B = \sqrt{M T B \Delta}$

$$
S_{1/2}^{0\nu} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{n_{\beta\beta}}{n_{\sigma} \cdot n_{\beta}} = \ln 2 \cdot \varepsilon \cdot \frac{1}{n_{\sigma}} \cdot \frac{x \eta N_A}{M_A} \cdot \sqrt{\frac{M T}{B \Delta}}
$$

 $(M =$ detector mass $T =$ measuring time $B =$ background level $\Delta =$ energy resolution)

 $\overline{\mathcal{A}}$

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Detector requirements

- good energy resolution
	- only protection against $2\nu\beta\beta$ spectrum tail \Box

$$
\Box \quad R_{0\nu/2\nu} \propto \left(\frac{Q_{\beta\beta}}{\Delta}\right)^{\!\!\!6} \frac{t_{1/2}^{2\nu}}{t_{1/2}^{0\nu}}
$$

- very low background
	- underground location $+$ shielding \Box
	- radio-pure materials for detector and surrounding parts

 $((10^9 - 10^{10}) \text{ yr from natural chains vs.} > 10^{25} \text{ yr of } 0 \text{ v} \beta \beta)$

5

- analysis rejection techniques \Box
- large isotope mass
	- \Box present: some tens up to hundreds of kg
	- \Box tonnes required to cover the IH region

Counts

It is up to the experimentalists to choose which aspect to privilege in order to get the best sensitivity

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Present sensitivity

Effective Majorana mass

 $m_{\beta\beta} \equiv |\sum_i U_{ei}^2 m_i| = |e^{i\xi_1} \cos^2 \theta_{12} \cos^2 \theta_{13} m_1 + e^{i\xi_2} \cos^2 \theta_{13} \sin^2 \theta_{12} m_2 + \sin^2 \theta_{13} m_3|$

Comparison of the (future) experiments

7 C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

A crucial issue: background suppression

$$
\blacksquare \text{ recall: } S_{1/2}^{0\nu} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{n_{\beta\beta}}{n_{\sigma} \cdot n_{\beta}} = \ln 2 \cdot \varepsilon \cdot \frac{1}{n_{\sigma}} \cdot \frac{x \eta N_A}{M_A} \cdot \sqrt{\frac{MT}{B \Delta}}
$$

 \blacksquare when *B* is sufficiently low \rightarrow zero background condition

□ transition region in between: $M T B \Delta = \mathcal{O}(1)$ (no expected events in the ROI)

$$
S_{1/2,0B}^{0\nu} = \ln 2 \cdot \varepsilon \cdot \frac{x \eta N_A}{\mathcal{M}_A} \cdot \frac{M T}{N_S}
$$

max n. of counts compatible with 0 bkg

 \Box the sensitivities scales linearly with the exposure!

The zero bkg condition depends on *M*: the larger the detector mass, the more strict the request on the background

8

 \Box the same bkg level can suffice for a kg-size experiment, but not for a tonne-size one

Zero Background Condition? The GERDA case Eur. Phys. J. C (2018) 78 :388 Page 3 of 30 **388**

BEGe detectors making up the Phase II detector array; it

ment as a function of exposure for various background indices. An over-

Phase I and II are indicated

Sensitivity or Discovery Potential? The GERDA - LEGEND case

2ββ: a (searched) signal, a MC test, a (major?) bkg **Result of 2νββ decay (2016)**

11

 $\mathcal{I}^{\mathcal{I}}$, $\mathcal{$

Choice of the isotope

- $Q_{\beta\beta} \rightarrow$ influences the bkg
	- 2.6 (3.3) MeV end-point of main γs (βs) \Box
	- \Box avoid radioactivity peak position obs. suitability depends on detector features
- high isotopic abundance
	- \Box ease of material enrichment (technologically + economically)
- availability of the isotope
	- \Box tonnes required for future $0\nu\beta\beta$ experiments
		- \rightarrow high cost + large procurement time
- compatibility with a detection technique

Most suitable **isotope** + detector combination

12

Technological Requirements

An example: ultrapure materials

What has been learned in a field/experiment is utilized in other applications

Choice of the isotope: theoretical side

In principle, isotopes with the best Nuclear Factor of Merit ($G_{0_\mathsf{V}}\cdot\left\lvert M_{0_\mathsf{V}}\right\rvert^2$) should be favoured

A surprising inverse correlation has been observed between (specific) phase space and the square of the nuclear matrix element.

Constraints from oscillations: $m_{\beta\beta}$ vs m_{β} lightest

Since
$$
(t_{1/2}^{0\nu})^{-1} = G_{0\nu} \cdot |M_{0\nu}|^2 \cdot \left|\frac{m_{\beta\beta}}{m_e}\right|^2
$$

 S^2 you can put constraints on the half-life trough constraints on $m_{\beta\beta}$

- it is possible to put a first series of constraints on $m_{\beta\beta}$
	- \circ $m_{\beta\beta}^{max} = \sum_{i=1}^{3} |U_{\alpha i}^{\beta}| m_i$ o $m_{\beta\beta}^{\min} = \max\left\{2\left|\frac{U_{ci}^2}{m_i} - m_{\beta\beta}^{\max}, 0\right.\right\}$ $i - 1, 2, 3$
- $\xi_{1,2}$ are left free

Constraints from cosmology: $m_{\beta\beta}$ vs Σ

• **Σ** < 140 meV (95% C.L.) by combining:

Lyα-forest from BOSS + CMB data from Planck + BAO data from BOSS (limits within the ΛCDM model)

At the 1**σ** level, the IO is excluded, as (recently) claimed also from oscillations

Implications for the $0\nu\beta\beta$ search

Depending on the ordering and on the C.L. we want to consider, $m_{\beta\beta}$ can at most have the following values:

Except for the 1σ C.L. they are still at the level reachable by the present experiments

18

S. Dell'Oro, S.Marcocci, M. Viel, F. Vissani, J. Cosm. Astropart. Phys. 1512, 023 (2015)

Discovery probabilities: a shot in the arm?

- Global Bayesian analysis including v-oscillation, m_{β} $m_{\beta\beta}$, Σ
- Priors:
	- Majorana phases (flat)
	- m_1 (scale invariant) ٠

Discovery probabilities: controversial, but still interesting

Apart presenting data in a different way, the 2 groups reach quite different results

Is it a mere philosophical problem?

Will we have in a short time a hint on how to disentangle the issue?

A. Caldwell et al., Phys. Rev. D 96, 073001

A big Challenge for 0νββ Discovery

• a convenient parametric description of the NME can be:

$$
\mathcal{M} \equiv g_A^2 \mathcal{M}_{0\nu} = g_A^2 \left(\mathcal{M}_{GT}^{(0\nu)} - \left(\frac{g_V}{g_A} \right)^2 \mathcal{M}_F^{(0\nu)} + \mathcal{M}_T^{(0\nu)} \right)
$$

- *M*_{0v} depends only mildly on g_A
- relatively small intrinsic error of \sim 20%
- fix the g_A renormalization to account for the differences between calculations and rates for processes "similar" to $0\nu\beta\beta$ (β , EC, $2\nu\beta\beta$)
- important effect of g_A
	- any uncertainty on its values \Rightarrow a larger uncertainty factor on *M*

Size of g_A

- $g_A \simeq 1.27$ in weak interactions and decays of nucleons (measured)
- renormalization in nuclear medium, value appropriate for quarks
- strong quenching: $g_A < 1$
	- o limited model space of the calculation
	- o contribution of non-nucleonic degrees of freedom
	- o renormalization of the GT operator due to two-body currents

22

• still unknown if the quenching in $0\nu\beta\beta$ and $2\nu\beta\beta$ is the same

$$
g_A^{\text{quark}} = 1
$$

\n
$$
g_A^{\text{nucleon}} = 1.27
$$

\n
$$
g_A^{2\nu\beta\beta} = 1.27 \cdot A^{-0.18}
$$

\n
$$
g_A^{0\nu\beta\beta} = ??
$$

BUT WHY SHOULD IT BE THE SAME?

 $0\nu\beta\beta$ decay is a high-momentum transfer process (q ~ 100 MeV)⇒ less quenching

(J. Menéndez, D. Gazit, A. Schwenk, PRL 107 (2011) 062501

Effect of the nuclear uncertainties: Xe case

- different NMEs / fixed g_A
	- \circ 74 meV $< m_{\beta\beta} < 149$ meV
- different g_A / fixed NMEs
	- 74 meV $< m_{\beta\beta}$ $<$ (149) 542 meV

 $t_{0\nu}^{1/2} \propto g_A^{-4} \, {\cal M}_{0\nu}^{-2}$

the main uncertainty consists in the determination of the *true value* of g_A

How can the experimentalists help?

0.001

50 100 150 200 250 300 350

Electron kinetic energy (keV)

More shape spectra to be measured to extract a "general law" Will not give the quenching of g_A for 0 $\nu\beta\beta$, but...

A by-product from forbidden **β** decays studies for g_A

Studying the forbidden unique and non unique **β** decays is extremely important also for the Reactor Anomaly

Warning: **don't stick to m**_{ββ} metric, just go on with T_{1/2}! Variety of $0\nu\beta\beta$ mechanisms:

 $0vββ$ from any mechanism \rightarrow Majorana nature of *v* would be established anyway

From: E.Lisi, Nu2018

26 C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

BACKUP SLIDES

Experimental techniques (I)

Ge-diodes

- high-purity enriched crystals \Box
- high energy resolution ($\lesssim 0.2\%$ @ $Q_{\beta\beta}$) □
- bkg rejection by pulse shape analysis \Box

Heidelberg-Moscow **IGEX**

GERDA MAJORANA Demonstrator

bolometers п

- \Box high energy resolution (close to Ge-diodes)
- many compounds with $0\nu\beta\beta$ emitters \Box
- large source masses □
- complex cryogenic infrastructure \Box

CUORE-0 Cuoricino AMoRE CUPID-0 CUORE

Experimental techniques (II)

- \blacksquare Xe liquid ...
	- \Box Xe easily enrichable
	- \Box event topology reconstruction
	- low energy resolution (\sim 3%) \Box
- \blacksquare ... and gaseous TPCs
	- higher energy resolution \Box
	- \Box lower signal efficiency (\sim 30%)

EXO-200 NEXT

- liquid scintillators loaded with $0\nu\beta\beta$ isotope
	- \Box poor energy resolution ($\sim 10\%$)
	- huge amount of material \Box
	- \Box very low background

$KamLAND-Zen$ $SNO+$

29

Experimental techniques (III)

\blacksquare tracker + calorimeter

- almost no limitations in the choice of the isotope \Box
- large isotope masses hardly achievable \Box
- low energy resolution ⊔
- event topology reconstruction \Box

NEMO-3 SUPERNEMO

\blacksquare others

- \Box variations on the previous, or new techniques
- \Box numerous running prototypes and R&D projects

CANDLES COBRA ZICOS DCBA/MTD FLARES

30

Future players: SuperNEMO

- **SuperNEMO**
	- □ tracker + calorimeter with 100 kg of ⁸²Se $\beta\beta$ source
	- background in ROI: $5c$ keV⁻¹ t⁻¹ yr⁻¹ \Box
	- energy resolution: 120 keV FWHM @ Q_{BB} ш
	- □ sensitivity goal on 0νββ half-life: 10^{26} yr
- from the experience of NEMO-3
	- improved detector design $+$ modularity \Box
	- \Box increased detector radio-putity
	- \Box increased source radio-purity

31

superNEMO demonstrator first produced module (1 of 20) 7 kg of isotope mass **E** expected sensitivity: $6 \cdot 10^{24}$ yr

Future players: $SNO+$

- Sudbury Neutrino Obrservatory +
	- \Box 3.9t of tellurium dissolved in LS
	- \Box background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹
	- \Box energy resolution: 270 keV FWHM @ Q_{BB}
	- □ sensitivity goal on 0νββ half-life: $2 \cdot 10^{26}$ yr
- commissioning ongoing
	- \Box tellurium stored underground
	- purification system under construction \Box
	- calibration system ready \Box
	- loading of LS forthcoming \Box

$SNO+$ 0v $\beta\beta$ programme

- Te concentration in LS: $0.5\% \rightarrow 5\%$
- 13.3t of isotope mass
- **E** expected sensitivity: $> 10^{27}$ yr

Future players: NEXT-100

- Neutrino Experiment with a Xenon TPC
	- \Box gas TPC with 100 kg of ¹³⁶Xe enriched xenon
	- background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹
	- energy resolution: 15 keV FWHM @ Q_{BB} \Box
	- □ sensitivity goal on 0νββ half-life: $5 \cdot 10^{25}$ yr
- result of a strong R&D programme
	- \Box NEXT-WHITE: final validation prototype
	- \Box signal amplification by electroluminescence
	- \Box tracking plane (SiPMs) + energy plane (PMTs)

The NEXT program

- NEXT-100 \rightarrow NEXT-250 \rightarrow NEXT-ton
- **D** background estimate: 0.05 c keV $^{-1}$ t $^{-1}$ yr $^{-1}$
- **n** final expected sensitivity: 10^{27} yr

Future players: LEGEND

- Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay
	- 200 kg \rightarrow 1 t of ⁷⁶Ge enriched HPGe-diodes \Box
	- background in ROI: $0.1 c keV^{-1} t^{-1} yr^{-1}$ \Box
	- energy resolution: 2.5 keV FWHM @ Q_{BB}
	- sensitivity goal on $0\nu\beta\beta$ half-life: 10^{28} yr \Box
- best of GERDA & MJD
	- \Box water + LAr for low-A shielding (G)
	- \Box LAr active veto (G)
	- radio-pure material, especially Cu (M)
	- low-noise electronics (M) \Box

C. Brofferio - INVISIBLES 2018 - Karlsruhe Sept. 3-7 2018

Future players: KamLAND2-Zen

- Kamioka Liquid scintillator Anti-Neutrino Detector 2 - Zero neutrino
	- \Box 1 t of ¹³⁶Xe enriched xenon dissolved in LS
	- background in ROI: 0.01 c keV⁻¹ t⁻¹ yr⁻¹ \Box
	- energy resolution: 50 keV FWHM @ Q_{BB}
	- sensitivity goal on $0\nu\beta\beta$ half-life: 10^{27} yr \Box
- from the experience of KamLAND-Zen \mathbf{r}
	- \Box improved light collection (new LS & PMTs + collectors)
	- scintillating balloon $(^{214}$ Bi tagging) \Box
	- new method for LS purification \Box
	- pressurized Xe-LS \Box

Future players: nEXO

- next Enriched Xenon Observatory
	- \Box liquid TPC with 4.7 t of active ¹³⁶Xe enriched xenon
	- \Box background in ROI: 0.01 c keV $^{-1}$ t⁻¹ yr⁻¹
	- \Box energy resolution: 60 keV FWHM @ Q_{BB}
	- □ sensitivity goal on 0νββ half-life: $9 \cdot 10^{27}$ yr
- from the experience of EXO-200
	- \Box 3x larger size \Rightarrow 30x mass/volume
	- \Box improved design & components
	- \Box increased light collection

(larger coverage $+$ APDs \rightarrow SiPMs)

A major challenge: Ba tagging

 $1^{36}Xe \rightarrow 1^{36}Ba^{++} + 2e^{-}$

36

- complete background elimination
- 40x in expected sensitivity: $4 \cdot 10^{28}$ yr

Future players: CUPID

- **CUORE Upgrade with Particle IDentification** (Cryogenic Underground Observatory for Rare Events)
	- 750 kg bolometric array of enriched crystals \Box
	- $TeO₂$ or Mo/Se compounds
	- background in ROI: 0.1 c keV⁻¹ t⁻¹ yr⁻¹ \Box
	- energy resolution: 5 keV FWHM @ Q_{BB}
	- sensitivity goal on $0\nu\beta\beta$ half-life: $5 \cdot 10^{27}$ yr
- from the experience of CUORE
	- use CUORE cryogenic infrastructure \Box
	- light collection (Cerenkov / scintillation) \Box
	- $\rightarrow \alpha$ vs. β/γ separation \Rightarrow bkg reduction

CUORE first results (Oct 2017)

Future players: PandaX-III

- Particle and astrophysical Xenon Detector III
	- \Box 5 gas TPCs with 200 kg of ¹³⁶Xe enriched xenon
	- background in ROI: 0.01 c keV⁻¹ t⁻¹ yr⁻¹ \Box
	- energy resolution: 75 keV FWHM @ Q_{BB} \Box
	- □ sensitivity goal on 0νββ half-life: 10^{27} yr
- \blacksquare 0v $\beta\beta$ search with the PandaX programme
	- \Box symmetric TPC instrumented with Microbulk MicroMegas
	- \Box extensive material screening campaign
	- commissioning of prototype TPC (10 kg Xe) ongoing \Box

Future players: AMoRE-II

- Advanced Mo-based Rare process Experiment II
	- 200 kg bolometric array of enrMo-based crystals \Box
	- background in ROI: $0.1c$ keV $^{-1}$ t $^{-1}$ yr $^{-1}$ \Box
	- energy resolution: 10 keV FWHM @ $Q_{\beta\beta}$ \Box
	- □ sensitivity goal on 0νββ half-life: $5 \cdot 10^{26}$ yr
- result of the AMoRE programme
	- \Box new underground laboratory: ARF
		- @ Handeok Iron Mine (1100 m overburden)
	- \Box new cryogenic infrastructure
	- improved detector performance \Box

AMoRE pilot

- 6 crystals of $^{40}Ca^{100}MoO₄ (\sim 1.8 kg)$
- several upgrades in detector/system design
- **E** FWHM @ 208 TI: 43 keV \rightarrow 10 keV