

The High Energy Neutrino Sky

Irene Tamborra Niels Bohr Institute, University of Copenhagen

Invisibles18 Workshop Karlsruhe, September 4, 2018

High Energy Neutrino Production

Electron and muon neutrinos are produced by charged pion decay.

Gamma-ray photons are produced by neutral pion decay.

Anchordoqui et al., PLB (2004). Kelner, Aharonian, Bugayov, PRD (2006). Kelner, Aharonian, PRD (2008).

Messengers of the High Energy Heavens

Neutrinos, gamma rays and cosmic rays have similar energies.

Figure taken from Ahlers & Halzen, arXiv: 1805.11112.

Neutrino Arrival Directions

No evidence of clustering in arrival directions of HE neutrinos Neutrinos of extragalactic origin. Isotropic distribution

Figure taken from Ahlers & Halzen, arXiv: 1805.11112.

Emerging Tasks

- Find the sources of IceCube's high energy neutrinos.
- Identify any connection with UHECR & electromagnetic emission.
- Understand production mechanisms of high energy cosmic particles.
- Use multi-messenger data to obtain a unique view on sources.
- Test physics beyond the Standard Model.

Source Identification

Where Are These Neutrinos Coming From?

★ New physics?

★ Galactic origin [sub-dominant contribution]

★ Extragalactic origin

- Star-forming galaxies
- Gamma-ray bursts
- Active galactic nuclei, blazars
- Cluster of galaxies
- Tidal disruption events
- Low-power or choked sources

Anchordoqui et al., JHEAp (2014). Meszaros, arXiv: 1511.01396. Waxman, arXiv: 1511.00815. Murase, arXiv: 1511.01590.

Neutrino Point Sources

Mertsch, Rameez, Tamborra, JCAP (2017). Murase & Waxman PRD (2016). Feyereisen, Tamborra, Ando, JCAP (2017).

Diffuse Neutrino Backgrounds

- Spectral energy distribution
- Distribution of sources with redshift
- Distribution of sources with luminosity
- Comoving volume (cosmology)

Active Galactic Nuclei (Blazars)

• AGN among suspected cosmic ray sources and as such natural candidate neutrino sources.

- Contribution from AGN is strongly model-dependent, but might be sizable.
- Resolved and unresolved blazars can partly explain the IceCube flux (w/o violating stacking bounds).

Palladino et al., arXiv: 1806.04769. Padovani et al., MNRAS (2015). Murase, arXiv: 1511.01590.

Gamma-Ray Bursts

- Dedicated stacking searches on GRBs unsuccessful up to now.
- Bright GRBs can make up to few % of the high-energy IceCube flux.
- Low luminosity GRBs can emit sizeable neutrino flux!

Tamborra & Ando, JCAP (2015), Liu&Wang (2013), Murase&Ioka (2013), Liang et al. (2006), Boncioli, Biehl, Winter (2018).

The Low-Energy Excess (30-400 TeV)

• Electromagnetically hidden sources invoked to interpret the low-energy excess.

 Although hidden GRBs can produce a copious amount of neutrinos, they cannot be the sources of excess of neutrino events at low energies.

Denton & Tamborra, JCAP (2018). Murase, Guetta, Ahlers, PRL (2016).

Star-Forming Galaxies

Under calorimetric conditions, star-forming galaxies efficiently produce neutrinos!

Tamborra, Ando, Murase, JCAP (2014). Thompson et al. (2006), Fields et al. (2010), Makiya et al. (2011), Stecker&Venters(2011). Loeb&Waxman (2006), Lacki et al. (2011), Murase et al. (2013).

Star-Forming Galaxies

Fermi finds that blazars make 86% of the total extra-galactic gamma-ray background.

Results in possible tension with star-forming galaxies as dominant source of the diffuse neutrino background.

Bechtol et al., ApJ (2017). Fermi Collaboration, PRL (2016).

Tomographic Constraints

Cross-correlation between gamma rays and galaxy catalogs provides **tighter** bounds on neutrino sources.

Any p-p source with a spectrum softer than $E^{-2.1}$ and evolution slower than $(1+z)^3$ is excluded.

Ando, Tamborra, Zandanel, PRL (2015).

Probing the Source Physics

Supernova-GRB Connection

Continuum of stellar explosions originating from hydrogen-stripped envelopes.

Margutti et al., ApJ (2014). Woosley & Bloom (2006). Bloom & Hjorth (2011). Lazzati et al. (2012). Piran et al. (2017). Sobacchi et al., MNRAS (2017).

Supernova-GRB Connection

Neutrinos may be the only particles successfully escaping the stellar envelope.

Supernova-GRB Connection

IceCube data constrain the fraction of SNe harboring jets and the fraction of choked jets (compatible with electromagnetic observations of bright jets).

Denton & Tamborra, ApJ (2018). Denton & Tamborra, JCAP (2018). Tamborra & Ando, PRD (2016). Senno et al., PRD (2015). Meszaros & Waxman, PRL (2001).

Millisecond Magnetars

D = 10 Mpc

Long-lived ms magnetar following NS merger may produce neutrinos up to 1 year. Neutrinos (in coincidence with GWs) would be smoking gun signal for long-lived magnetar.

Fang & Metzger, ApJ (2017).

Cosmogenic Neutrinos

Neutrinos can hint towards redshift evolution and nuclear composition of cosmic ray sources.

Moller, Denton & Tamborra, to appear. Alves Batista et al., arXiv: 1806.10879.

Probing Particle Physics

Why?

- Neutrinos with highest energies (PeV)
- Neutrinos with the longest baseline (Gpc)
- We have data!

Probes of Physics at new energy scales.

Efficiently enhancing small effects.

High energy neutrinos can tell us about

- * Dark matter annihilation and decay
- New interactions and neutrino secret interactions
- Neutrino decay
- Sterile neutrinos
- Lorentz invariance violation
- * Anomalous neutrino magnetic moment
- Non-standard neutrino interactions
- * Matter effects

*

Physics Beyond the Standard Model

Fraction of parameter space excludable by IceCube and IceCube-Gen2.

Scenario	Exclusion by	Exclusion
	IceCube	by IceCube-
		Gen2
Complete flavor triangle	42%	96%
Standard mixing	2%	73%
Non-standard neutrino	17%	93%
production		
NSI at production	5%	84%
Matter effetcs	0%	71%
Pseudo-Dirac neutrino	14%	85%
Decay	14%	85%
Quantum decoherence	2%	73%
Sterile neutrino	10%	86%
Effective operator	36%	94%
Interaction with DM	42%	96%
Shortcut through extra	11%	80%
dimension		
NSI in Earth matter	30%	92%
NSI at detection	11%	89%

Rasmussen et al., PRD (2017). Ahlers, Helbing, los Heros, arXiv: 1806.05696.

An Example: Invisible Neutrino Decay

Invisible neutrino decay with $\tau/m = 10^2 \text{s/eV}$ solves tension between track and cascade data.

Denton & Tamborra, PRL (2018, in press). See also arXiv: 1808.07629.

- Observation of extragalactic neutrinos opens a new window on high-energy Universe.
- Sources not yet resolved, multi-messenger methods powerful.
- Composition of IceCube energy spectrum seems complex.
- High energy neutrinos are already useful as probes of source physics.
- High energy neutrinos are unique probes of particle physics at new scales.

