

Axion - Experiment overview Invisibles18 Workshop, Karlsruhe

C. Braggio *University of Padova and INFN*

September 5, 2018

イロトイタトイミトイミト ミニウムペ

ARE WE HOMING IN ON AXIONS?

\blacktriangleright a well motivated scenario:

- − physics case is stronger (potential cosmological and astrophysical role)
- − SUSY is failing tests at LHC, lack of WIMP detection in underground detectors
- \blacktriangleright blooming phase:
- − new detection concepts
	- − commissioning of demonstrative small-scale setups
	- \blacktriangleright upgrade to large scale experiments for established techniques
	- \blacktriangleright $f_A \gg 10^7$ GeV \Longrightarrow $m_A \ll eV$ "invisible" axion

detection techniques are by no means common in particle physics

OCD Axions

Axion-like Particles

T. Ta[it/U](#page-0-0)[nive](#page-2-0)[rs](#page-0-0)[ity](#page-1-0) [of](#page-2-0) [C](#page-0-0)[ali](#page-1-0)[fo](#page-4-0)[rn](#page-5-0)[ia](#page-0-0)[, I](#page-1-0)[rv](#page-4-0)[in](#page-5-0)[e](#page-0-0)

AXION VS WIMP DETECTION

WIMP [1-100 GeV]

- − number density is small
- − tiny wavelength
- − no detector-scale coherence

⁼[⇒] observable: **scattering** of individual particles

- AXION $[m_A \ll eV]$
- − number density is large (boson)
- − long wavelength
- − coherence within detector
- ⁼[⇒] observable: classical, oscillating, **background field**

AXION COUPLINGS

$$
\mathcal{L}_a = \frac{1}{2} \partial_\mu a \, \partial^\mu a + \frac{1}{2} m_a^2 a^2
$$

An almost *model-independent axion mass*:

$$
m_a \simeq 0.6 \times 10^{-4} \, \text{eV} \left(\frac{10^{11} \text{GeV}}{f_a} \right)
$$

$$
a \longrightarrow \begin{pmatrix} 1 & \text{exponential} \\ \text{exponential} \\ \text{exponential} \\ \text{exponential} \end{pmatrix}
$$

$$
\mathcal{L}_{a\gamma\gamma} = -\frac{\alpha}{2\pi} f_a^{-1} g_{a\gamma\gamma} \mathbf{E} \cdot \mathbf{B} a
$$

Primakoff effect: axion detection by their decay into microwave photons in an external magnetic field **B**

$$
\mathcal{L}_a = f_a^{-1} g_{aij} \bar{\psi}_i \gamma^\mu \gamma^5 \psi_j \partial_\mu a
$$

In DFSZ axion models couplings with fermions are not suppressed at tree level

イロトイ団 トイミトイミト ニヨー りんぐ

SENSITIVITY PLOTS:

WE WANT TO MEASURE A MASS AND A COUPLING

e
Each interaction is modeled through a related coupling $\frac{1}{2}$

- $-$ axion-photon $(g_{a\gamma})$
- − axion-electron (*gae*) stars
- $-$ axion-nulceon (g_{aN})

(not straightforward to relate one coupling to another) θ

HINTS, CONSTRAINTS AND MODELS ONSTRAINTS AND MODELS

DETECTION STRATEGIES FROM ASTROPHYSICS AND COSMOLOGY order the evolution of \mathcal{A}

- − axions modify stellar evolution/dynamics stars
- $-$ axions modify intergalactic γ -ray transparency homod
a

イロト イ押 トイヨ トイヨト OQ \equiv

I[NTRODUCTION](#page-1-0) D[ETECTION STRATEGIES](#page-5-0) [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*[fermion](#page-14-0)* R&D AXION-[PHOTON](#page-27-0) [ATOMIC TRANSITIONS](#page-30-0) 000000

WHAT WE KNOW ABOUT THE CDM LOCAL DISTRIBUTION

Aquarius simulation http://www.mpa.mpa-garching.mpg.de/aquarius/ 0.03 J. I. Read, The local dark matter density, J. of Phys. G 41 vol 6 (2014) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

DM can have additional structures on small scales: $\frac{1}{2}$ $\frac{1}{2}$

 $-$ if axions continuously fall into galaxies they would form caustic rings $\frac{1}{2}$ $\frac{1$ [Sikivie 2011]

 $\begin{array}{c|c|c|c|c} - \text{if axion DM density is dominated by few local streams, its velocity} \end{array}$ $\begin{array}{c|c|c} - \text{if axion DM density is dominated by few local streams, its velocity} \end{array}$ distribution can be very narrow (orders of magnitude) $\frac{1}{8}$ eri $\frac{1}{8}$ eri $\frac{1}{2}$ can be very narrow (orders of magnitude)

- \triangleright cosmic axion density $\rho_{DM} \sim 0.3$ GeV/cm³ [$\tilde{\rho} = 1$] $\longrightarrow n_a \sim 3 \times 10^{12}$ (10⁻⁴ eV/*m_a*) a/cm³
- \blacktriangleright axion velocities are distributed according to a Maxwellian distribution $f(v) = 4\pi \left(\frac{\beta}{\pi}\right)^{3/2} v^2 \exp(-\beta v^2)$, with $\beta = \frac{3}{2\sigma_v^2}$, σ_v velocity dispersion
- \triangleright $\sigma_v \sim 10^{-3} \rightarrow$ the axion energy distribution is monochromatic 1 part in 10⁶
- **►** + motion of E in the galaxy \longrightarrow they can be seen as a wind with $v \sim 10^{-3} c$

MATCHING TO THE AXION LINEWIDTH

When bosons with $m_a < 10$ eV make up a significant fraction of the DM energy density (hp: all), their number density is so large that there are many of them per De Broglie wavelength volume. When that happens, their superposition can be described as a classical field oscillating at a frequency set by their mass, and a coherence time determined by the inverse energy spread $\sim 10^6$ periods of oscillation \Longrightarrow *macroscopic spatial coherence*

 a_0 is a very small number ($B_a \sim 10^{-21}$ T) but coherent oscillations allow for detection

 $\overline{ }$

COHERENCE TIME

$$
\tau_{\nabla a} = 0.68\tau_a \simeq 34 \,\mu s \left(\frac{10^{-4} \text{eV}}{m_a}\right)
$$

CORRELATION LENGTH

$$
\lambda_{\nabla a}=0.74\lambda_a\simeq10.2\,\text{m}\left(\frac{10^{-4}\text{eV}}{m_a}\right)
$$

- \blacktriangleright relaxation time of the magnetized materials/lifetime of the involved atomic levels must not exceed the coherence time
- ▶ huge number of ch[an](#page-7-0)n[els](#page-9-0)
(\Box) (\Box) (\Box) (\Box) (\Box) = 0,00

I[NTRODUCTION](#page-1-0) D[ETECTION STRATEGIES](#page-5-0) [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*[fermion](#page-14-0)* R&D AXION-[PHOTON](#page-27-0) [ATOMIC TRANSITIONS](#page-30-0) 000000

THE RESONANTLY ENHANCED AXION-PHOTON CONVERSION

If axions are *almost monochromatic* then their conversion to detectable particles (photons) can be accomplished using *high-Q* microwave cavities.

$$
- \omega_{\text{TM}^{[n]}} = \sqrt{\left(\frac{\epsilon_n}{r}\right)^2 + \left(\frac{l\pi}{h}\right)^2}
$$

for a cylindrical cavity in a solenoidal field, the TM*onl* are the cavity modes that couple with the axion

- resonant amplification in $[m_a \pm m_a/Q]$
- − data in thin slices of parameter space (tuning rod); typically $Q < Q_a \sim 1/\sigma_v^2 \sim 10^6$

HERRICH STRAIN STRAIN

THE RESONANTLY ENHANCED AXION-PHOTON CONVERSION

I[NTRODUCTION](#page-1-0) DETECTION STRATEGIES [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION-PHOTON ATOMIC TRANSITIONS
QOOQ AQOO DATOMIC **CONVENTIONS INTENSITIONS** 000000 shows a sketch of the haloscope concept. Being non-relativistic, \mathcal{L}

THE RESONANTLY ENHANCED AXION-PHOTON CONVERSION s on an fly enhanced axion-photon conversion

Signal power in the band
$$
[m_a \pm m_a/Q]
$$
:
\n
$$
P_s = \kappa \frac{Q}{m_a} g_{a\gamma}^2 B_e^2 |\mathcal{G}_m|^2 V \varrho_a
$$
\n
$$
= 7.2 \times 10^{-23} \text{W} \left(\frac{\kappa}{0.5}\right) \left(\frac{Q}{10^5}\right) \left(\frac{\mu \text{eV}}{m_a}\right) \left(\frac{g_{a\gamma}}{2 \times 10^{-16} \text{GeV}^{-1}}\right)^2 \left(\frac{B_e}{8\text{T}}\right)^2 \left(\frac{|\mathcal{G}_m|^2}{0.69}\right) \frac{V}{200l} \tilde{\varrho}_a
$$

I[NTRODUCTION](#page-1-0) DETECTION STRATEGIES [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*fermion* R&D AXION-PHOTON ATOMIC TRANSITIONS tion D[e](#page-8-0)tectio[n](#page-9-0) [s](#page-10-0)trateg[i](#page-11-0)es **convertional haloscope** R&D axion-p*ermion* R&D axion-photons. The photons [i](#page-6-0)[nt](#page-7-0)o photons. The photons in a conversions in α 000000 shows a sketch of the haloscope concept. Being non-relativistic, \mathcal{L}

The resonantly enhanced axion-photon conversion

Signal power in the band
$$
[m_a \pm m_a/Q]
$$
:
\n
$$
P_s = \kappa \frac{Q}{m_a} g_{a\gamma}^2 B_e^2 |\mathcal{G}_m|^2 V \varrho_a
$$
\n
$$
= 7.2 \times 10^{-23} \text{W} \left(\frac{\kappa}{0.5}\right) \left(\frac{Q}{10^5}\right) \left(\frac{\mu \text{eV}}{m_a}\right) \left(\frac{g_{a\gamma}}{2 \times 10^{-16} \text{GeV}^{-1}}\right)^2 \left(\frac{B_e}{8\text{T}}\right)^2 \left(\frac{|\mathcal{G}_m|^2}{0.69}\right) \frac{V}{200l} \tilde{\varrho}_a
$$

− for QCD axions, the signal is typically much \mathbb{R}^n . If an orientation is smaller than noise \mathbb{R}^n

$$
P_n = T_{sys} \Delta \nu = T_{sys} \frac{m_a}{2\pi Q_a}
$$

= 3.3 × 10⁻²¹ $\left(\frac{T_{sys}}{K}\right) \left(\frac{m_a}{\mu eV}\right) \left(\frac{10^6}{Q_a}\right)$

- − low noise microwave amplifiers
	- magnitude for $\nu > 10\,\text{GHz}$ for $T < 100\,\text{mK}$ techniques can accelerate searches by orders of

ADMX - WASHINGTON

– after > 30 y of R&D, already world-leading sensitivity to ultralow signal power levels. It is the only operating experiment able to probe the Total 13% \blacksquare

This result is a factor of 7.7 improvement in power sensitivity in power over p time and the first time and the first time and the first time and the first time and α has been able to exclude axions with DFSZ couplings. ADMX has achieved a factor of 7 improvement in its

electronics removed) achieved cavity temperatures lower than reported in this Letter, while the magnet in earlier ADMX runs [24] was operated at 7.6 T compared to the typical field of 6.8 T for the results reported here. Together,

augmenting the signal power by combining the outputs of multiple cotuned cavity resonators inside the current

-
- $\frac{1}{2}$ thin slice around 2.75 μ eV
- $\frac{1}{2}$ no new technology up to $10 \mu \text{ eV}$ \mathcal{A} recent engineering run of the apparatus (with some \mathcal{A}

PRL 120, 151301 (2018) these improvements could increase the SNR by a factor of 2

photon coupling with the boosted Maxwell-Boltzmann line shape from the isothermal halo model [39], while the blue line indicates the

HAYSTAC -YALE

- -127 mK, IPA
- first results in a new mass range $(24 \,\mu\text{eV})$
- pushing to higher mass values

PRL **118**, 061302 (2018)

K ロト K @ ト K 코 ト K 코 OQ WHAT ABOUT DIFFERENT MASS RANGES?

In the conventional haloscope the effective volume falls off rapidly with increasing frequency + lower masses limitations (B field)

some non-conventional axion detection strategies and complementarity [different mass ranges, different interactions]

HERRICH STRAIN STRAIN

with a focus on recently proposed haloscopes

AXION-PHOTON COUPLING

- − entirely lab experiments $(LSW, POL, 5th force)$
- − helioscopes, stellar astrophysics
- − haloscopes/cosmology dependent
- − QCD axion allowed

from I.G. Irastorza and J. Redondo, arXiv:1801.08127v2 [hep-ph]

HALOSCOPES: DEMONSTRATORS AND NEW PROPOSALS

NOTE: this is just a selection. . .

The interaction (**??**) has been recently considered in Ref.s [**?**, **?**] to search for axion

 $i\hbar\frac{\partial\varphi}{\partial t}$ $\frac{\partial \varphi}{\partial t} = \left[\right]$

Ba ⌘ *gp*

 $-\frac{g_p}{2}$

$$
\mathcal{L}_a = f_a^{-1} g_{aij} \bar{\psi}_i \gamma^\mu \gamma^5 \psi_j \partial_\mu a
$$

QUAX [EPR] axion-electron N S axion wind

The interaction term has the form of a specification with ∇a playing the role of a specification of a specification of a specification of Ω erm has the form of a spin—magnetic i
 ∇a playing the role of a ⁿ with v*a* playing the role of a
oscillating effective magnetic field .
fie The interaction term has the form of a spin−magnetic field
interaction with ⊽ø playing the role of a

$$
i\hbar \frac{\partial \varphi}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 - \frac{g_p \hbar}{2m} \boldsymbol{\sigma} \cdot \nabla a \right] \varphi
$$

\n
$$
-\frac{g_p \hbar}{2m} \boldsymbol{\sigma} \cdot \nabla a \equiv \left(-2 \frac{e \hbar}{2m} \boldsymbol{\sigma} \right) \cdot \left(\frac{g_p}{2e} \right) \nabla a
$$

\n
$$
-\frac{g_p \hbar}{2m} \boldsymbol{\sigma} \cdot \nabla a \equiv \left(-2 \frac{e \hbar}{2m} \boldsymbol{\sigma} \right) \cdot \left(\frac{g_p}{2e} \right) \nabla a
$$

\n
$$
B_a = \frac{g_{aee}}{2e} \sqrt{\frac{\hbar n_a}{m_a c}} n_a v_a
$$

\n
$$
\mu_B
$$
 the Bohr magneton
\n
$$
B_a \equiv \frac{g_p}{2e} \nabla a
$$

\n
$$
= 7 \times 10^{-23} \left(\frac{\rho_{dm}}{0.45 \text{ GeV}} \right)^{\frac{1}{2}} \left(\frac{m_a}{58.5 \mu \text{ eV}} \right) \left(\frac{v_a}{220 \text{ km/s}} \right) \text{T}
$$

 \sim tional Laboratory, and Fermilab, and the other by the Uni-

⌘ T*,*

I[NTRODUCTION](#page-1-0) D[ETECTION STRATEGIES](#page-5-0) [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*[fermion](#page-14-0)* R&D AXION-[PHOTON](#page-27-0) [ATOMIC TRANSITIONS](#page-30-0) 000000

AXION DETECTION BY RESONANT INTERACTION WITH *e*[−] SPIN

The interaction term has the form of a spin−magnetic field interaction with ∇*a* playing the role of a

oscillating effective magnetic field

$$
\frac{\omega_a}{2\pi} = f_a = \frac{m_a c^2}{h} \simeq 14 \left(\frac{m_a}{58.5 \,\mu\text{eV}}\right) \text{GHz},
$$

\n
$$
B_a = \frac{g_{aee}}{2e} \sqrt{\frac{\hbar n_a}{m_a c}} m_a v_a
$$

\n
$$
= 7 \times 10^{-23} \left(\frac{\rho_{\text{dm}}}{0.45 \,\text{GeV}}\right)^{\frac{1}{2}} \left(\frac{m_a}{58.5 \,\mu\text{eV}}\right) \left(\frac{v_a}{220 \,\text{km/s}}\right) \text{T}
$$

 $L_{\rm c}$ circuit $L_{\rm c}$ DM radio ABRACADABRA

EPR/FMR technique

− By placing a ferrimagnetic sample in a static magnetic field **B** (⊥ axion wind) it is possible to tune the Larmor frequency of the electrons to the axion frequency ν_a (spin σ is along the *z* axis).

(3)

- $-P_a$ deposits in the sample the power $P_a = B_a \frac{dM}{dt} V_s = 4\pi \gamma \mu_B \nu_a B_a^2 \tau_{\min} n_s V_s$
- $-P_a$ gives rise to RF/ μ wave radiation \Leftarrow **axion signal**

0.8

0.042413714313409Ö

4.4 4.6 4.8 5.0

4.4 4.6 4.8 5.0

f f f *ADIATION DAMPING*

The dynamics of the magnetic sample is well described by its magnetization *M*, whose evolution is given by the Bloch equations. The damping term affects the **maximum allowed coherence** hence the integration time of the magnetic system with respect to the axion driving input *Pa*. axion-photon M , whose evolution is given by the Bloch equations. The damping term affect the **maximum allowed coherence** hence
system with respect to the axion driving **, fr2 Ø 4.70, genetic sample is well describe**
 We have been a We have the ST only the bioen equation 33`, 8x, 4.2, 5<, g Ø 0.01<D, \mathbf{P}_a . 4.4 4.6 4.8 5.0 **nagnetic sample is well described by its mag** e hence the integration time of the driving input P_a . g
.

gm Ø

8 *cate.nb*

33`,

4.4 4.6 4.8 5.0

 \Rightarrow strong coupling regime (hybrid photon-magnon mode) **g Ø 0.01<D,**

8aa Ø 0.1,

4.4 4.6 4.8 5.0

QUAX [EPR] axion-electron N S $\frac{1}{2}$

The expected signal would also be model-dependent, but ex-

EXPERIMENTAL CHALLENGES

- **E** magnetized material with spin density 2×10^{28} m⁻³ and FMR linewidth \sim 150 kHz ($\tau_2 \sim 2 \,\mu$ s)
- **E** necessary magnetized sample volume $\sim 100 \text{ cm}^3$ to be hosted in $\sim 50 \text{ GHz}$ frequency cavities
- $\blacktriangleright \sim 10^6$ Q-factor cavity/cavities
- \triangleright ppm level uniformity and high stability of the 2 T magnetic field
- \triangleright signal detection beyond SQL with linear amplifiers \Longrightarrow single-photon microwave detectors
- \blacktriangleright 100 mK working temperature of the complete apparatus
- frequency tunability

five 1-mm YIG spheres ($V_s = 2.6$ mm³) \overline{r} \mathbf{H} HEMT low noise cryogenic amplifier

axion-to-photon and axion-to-electron couplings. In fact the apparatus has also the features of a Sikivie haloscope [24], and can be sensitive to the axion-photon coupling by using α

 \rightarrow reducing the noise [quantum counter] coupling constant *gaee*, several improvements should be im-

イロトイ団トイミトイミトー $\bar{\Xi}$ $\circledcirc \circledcirc \circledcirc$

within a factor of 100 to 1000 of the model band over a nar-[ro](#page-27-0)[w ran](#page-13-0)[ge i](#page-14-0)[n freq](#page-26-0)[uency](#page-27-0).4,5 $\mathcal{I} = \{ \mathcal{I} \mid \mathcal{I} \neq \emptyset \}$

axion DM field ≡ **oscillating EDMs**

 $\theta(t) \sim \theta_0 + \theta_{\approx} \cos(m_A t), \qquad \theta_{\approx} \sim 4 \times 10^{-19}$ fixed by $\tilde{\rho}_A$ $-p$ and *n* have EDMs $\propto \theta \Longrightarrow$ their EDMs trace the axion DM oscillations: $d_n(t) \simeq 0.0024 \times \theta_{\approx} \cos(\omega t)$ e fm.

DETECTION STRATEGY: a useful analogy

the ferroelectric material displays *intrinsic* electric fields *E*int at the nucleus position $d_n(t) \cdot E_{\text{int}} \Longleftrightarrow \mu_N B_{\perp}(t)$ i.e. the interaction of the induced nEDM with E_{int} is equivalent to the interaction of the spin with an oscillating *B*-field transverse to B_e ($B_{\perp}(t)$)

CASPEr-Electric

 $A \Box B$ $A \Box B$ $A \Box B$ a static topoi[da](#page-25-0)[l](#page-23-0) [fi](#page-24-0)[el](#page-25-0)[d](#page-26-0) B fi[e](#page-14-0)ld B

axion DM field ≡ **oscillating EDMs**

 $\theta(t) \sim \theta_0 + \theta_{\approx} \cos(m_A t), \qquad \theta_{\approx} \sim 4 \times 10^{-19}$ fixed by $\tilde{\rho}_A$ $-p$ and *n* have EDMs $\propto \theta \implies$ their EDMs trace the axion DM oscillations: $d_n(t) \simeq 0.0024 \times \theta_{\approx} \cos(\omega t)$ e fm.

DETECTION STRATEGY: a useful analogy

the ferroelectric material displays *intrinsic* electric fields *E*int at the nucleus position $d_n(t) \cdot E_{\text{int}} \Longleftrightarrow \mu_N B_{\perp}(t)$ i.e. the interaction of the induced nEDM with E_{int} is equivalent to the interaction of the spin with an oscillating *B*-field transverse to B_e ($B_{\perp}(t)$)

 \implies a resonant increase of the transverse magnetization when $B_{\perp}(t)$ oscillates at a frequency matching ω_l is expected!

CASPEr-Electric

 $A \Box B$ $A \Box B$ $A \Box B$ a static topoi[da](#page-26-0)[l](#page-23-0) [fi](#page-24-0)[el](#page-25-0)[d](#page-26-0) B fi[e](#page-14-0)ld B

$$
M_\perp \simeq pn_N\mu_N|d_n|E_{\rm int}t
$$

axion DM field ≡ **oscillating EDMs**

 $\theta(t) \sim \theta_0 + \theta \approx \cos(m_A t), \qquad \theta \approx \sim 4 \times 10^{-19}$ fixed by $\tilde{\rho}_A$ $-p$ and *n* have EDMs $\propto \theta \Longrightarrow$ their EDMs trace the axion DM oscillations: $d_n(t) \simeq 0.0024 \times \theta_{\approx} \cos(\omega t)$ e fm.

DETECTION STRATEGY: a useful analogy

the molecules are polarized so as to develop large *intrinsic* electric fields *E*int at the nucleus position $d_n(t) \cdot E_{\text{int}} \Longleftrightarrow \mu_N B_{\perp}(t)$ i.e. the interaction of the induced nEDM with E_{int} is equivalent to the interaction of the spin with an oscillating *B*-field transverse to B_e ($B_{\perp}(t)$)

 \implies a resonant increase of the transverse magnetization when $B_{\perp}(t)$ oscillates at a frequency matching ω_L is expected!

PROSPECTED SENSITIVITY

 \star phase I [²⁰⁷Pb nuclear spins in PMN-PT sample] \star phase II and III [sensitivity to QCD axion m_{*a*} <neV]

$\mathcal{L} = \mathcal{F} \cdot \mathcal{F$ $M_{\perp} \simeq pn_N\mu_N|d_n|E_{\text{int}}t$

HERRICH STRAIN STRAIN crucial diaeren[ces](#page-25-0) d[ue](#page-27-0) [t](#page-26-0)[o](#page-26-0) t[he](#page-27-0) [f](#page-21-0)[ac](#page-22-0)t t[ha](#page-13-0)t that that the [el](#page-0-0)[ectr](#page-0-1)on mass is much smaller than a nucleon's. For one,

イロトイ団 トイミトイモト \equiv $\circledcirc \circledcirc \circledcirc$ I[NTRODUCTION](#page-1-0) D[ETECTION STRATEGIES](#page-5-0) [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*[fermion](#page-14-0)* R&D AXION-[PHOTON](#page-27-0) [ATOMIC TRANSITIONS](#page-30-0) 000000

SEARCHING THE AXION AT HIGHER MASSES

Broadband **R**adiometric **A**xion **S**earche**S**

dish antenna concept: photons are emitted by reflective/refractive surfaces in a magnetic field *B^e* and the DM halo field *B^a*

$$
E_a = \frac{g_{a\gamma}B_e a(t)}{\varepsilon}
$$
 ALP field in a medium with dielectric constant ε

 \rightarrow to satisfy the continuity conditions at a boundary, the pure ALP-like wave goes with photon-like waves

$$
\frac{P_{\text{dish}}}{P_{\text{haloscope}}} \propto \frac{m_a^2 \mathcal{A}}{Q}
$$

a dish with a magnetized area of $A \sim 1 \text{ m}^2$ competes with an *Q* ∼ *Q_a* ∼ 10⁶ haloscope at $m_a \sim 200 \mu \text{eV}$

 $\circledcirc \circledcirc \circledcirc$

SEARCHING THE AXION AT HIGHER MASSES

Magnetized Disc and Mirror Axion Experiment

by adjusting the distances between the layers, the frequency dependence of the boosted sensitivity can be adjusted to different bandwidths

KOD KARD KED KED B YOUR

イロトイ団 トイミトイモトー È $\circledcirc \circledcirc \circledcirc$

AXION DETECTION WITH ATOMIC TRANSITIONS

- > axion-induced transitions take place between Zeeman-split ground state levels in rare-earth doped materials
- \blacktriangleright transitions involve electrons in the 4f shell (as if they were free atoms...)
- \blacktriangleright a tunable laser pumps the excited atoms to a fluorescent level
- ▶ crystal immersed in LHe and superfluid He

AXION DETECTION IN RE-DOPED MATERIALS

For one mole of target atoms (RE-dopant) in the ground state $|0\rangle$, the transition rate to the level $|i\rangle$ by axion absorption on resonance (P. Sikivie PRL (2016))

$$
N_A R_i = 8.5 \times 10^{-3} \left(\frac{\rho_a}{0.4 \,\text{GeV/cm}^3} \right) \left(\frac{E_a}{330 \,\mu\text{eV}} \right)^2 g_i^2 \left(\frac{\overline{v^2}}{10^{-6} c^2} \right) \left(\frac{\text{min}(t, \tau, \tau_{\nabla a})}{10^{-6} \,\text{s}} \right) \,\text{Hz}
$$

where R_i is the transition rate of a single target atom, N_A is the Avogadro number, $E_a = h\nu_a$ is the axion energy

 \rightarrow spectroscopic properties at "high" RE concentration (0.1 %, i.e. $\geq 10^{19}$ *axion target electrons*/cm³) in ∼ 1 l- active volume

the linewidth of the transition driven by the laser must be narrower than the energy difference between the atomic levels $|0\rangle$ and $|i\rangle$

 OQ

I[NTRODUCTION](#page-1-0) D[ETECTION STRATEGIES](#page-5-0) [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*[fermion](#page-14-0)* R&D AXION-[PHOTON](#page-27-0) [ATOMIC TRANSITIONS](#page-30-0) 000000

AXION DETECTION IN RE-DOPED MATERIALS: WORKING T

Thermal occupation of the Zeeman upper level needs to be suppressed

fundamental noise limit \rightarrow thermal excitation of the Zeeman excited level

$$
N_A R_t = \bar{n}/\tau
$$

 $\bar{n} = N_A \exp(-E_a/kT)$ average number of excited ions in the energy level *E^a* SNR= 3, statistically significant number of counts within $t_m = 1$ h \rightarrow thermal excitation rate $R_t = 6 \times 10^{-3}$ Hz

 $\tau = 1$ ms level lifetime $\rightarrow \bar{n} \leqslant 5 \cdot 10^{-6}$

Axions with mass greater than 80 GHz can be searched, provided $T \le 57$ mK.

=⇒ ultra-cryogenic (*T* ∼ 100 mK) optical apparatus Laser-related backgrounds ($\sim 10 \,\mathrm{W/cm^2}$)?

The pump laser does not affect the thermal population of the Zeeman excited level [up to a $\sim W/cm^2$ intensity]

HERRICH STRAIN STRAIN

I[NTRODUCTION](#page-1-0) D[ETECTION STRATEGIES](#page-5-0) [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*[fermion](#page-14-0)* R&D AXION-[PHOTON](#page-27-0) [ATOMIC TRANSITIONS](#page-30-0) \bullet 00000

AXION DETECTION STRATEGIES: THERE'S MUCH MORE!

- DM HALOSCOPES: interaction of axions forming DM Galactic halo with SM elementary particles (photons, nuclei, and electrons)
	- − ADMX, HAYSTAC (ADMX-HF)
	- − QUAX
	- − CASPEr-wind
	- − CASPEr-Electric (EDM induced on nuclear spin)
	- − ATOMIC TRANSITIONS
- **EXTEDELIOSCOPES:** axion production in the Sun
	- [−] **CAST, Baby-IAXO**
	- [−] **TASTE, SUMICO**
- **PURE LABORATORY EXPERIMENTS**
	- [−] **LSW (Light Shining through Wall), PVLAS (vacuum polarization)**
	- [−] **axion-mediated** 5 th **force measurements**

from I.G. Irastorza and J. Redondo, $arXiv:1801.08127v2$ [1] from I.G. Irastorza and J. Redondo, arXiv:18[01](#page-35-0)[.0](#page-36-0)[8](#page-33-0)[12](#page-34-0)7v2 [[hep](#page-0-1)[-p](#page-0-0)[h\]](#page-0-1) $\circledcirc \circledcirc \circledcirc$ di[s](#page-34-0)play can in [th](#page-33-0)[e](#page-34-0) sense of C_{α} from (2 12) from (2 12) from (2.42) [by](#page-0-1) the gap by the gap

AXION-ELECTRON COUPLING

from I.G. Irastorza and J. Redondo, [arX](#page-35-0)[iv:](#page-37-0)[1](#page-35-0)[801](#page-36-0)[.0](#page-37-0)[8](#page-33-0)[1](#page-34-0)[27v](#page-0-1)[2](#page-33-0) [\[](#page-34-0)[hep](#page-0-1)[-p](#page-0-0)[h\]](#page-0-1) OQ

ENERGY LEVEL DIAGRAM OF RE^{3+} IN LaCl₃

-4f electrons

– electrostatic interaction $10^4\,\mathrm{cm}^{-1}$

– further splitting by spin-orbit interaction 10^3 cm⁻¹
– crystal field (Stark splitting)

I[NTRODUCTION](#page-1-0) D[ETECTION STRATEGIES](#page-5-0) [CONVENTIONAL HALOSCOPE](#page-6-0) R&D AXION−*[fermion](#page-14-0)* R&D AXION-[PHOTON](#page-27-0) [ATOMIC TRANSITIONS](#page-30-0) 0000

ENERGY SPLITTINGS IN RE-DOPED MATERIALS

 $10^4 \text{ cm}^{-1} = 1.24 \text{ eV}$