0000 0 0000000 000 0000 000 0000	000000

Axion - Experiment overview Invisibles18 Workshop, Karlsruhe

C. Braggio University of Padova and INFN

September 5, 2018

・ロト・日本・日本・日本・日本・日本

ARE WE HOMING IN ON AXIONS?

• a well motivated scenario:

- physics case is stronger (potential cosmological and astrophysical role)
- SUSY is failing tests at LHC, lack of WIMP detection in underground detectors
- blooming phase:
- new detection concepts
 - commissioning of demonstrative small-scale setups
 - upgrade to large scale experiments for established techniques
 - $f_A \gg 10^7 \,\text{GeV} \Longrightarrow m_A \ll \text{eV}$ "invisible" axion

detection techniques are by no means common in particle physics

QCD Axions

Axion-like Particles

T. Tait/University of California, Irvine

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

AXION VS WIMP DETECTION

WIMP [1-100 GeV]

- number density is small
- tiny wavelength
- no detector-scale coherence

 \Rightarrow observable: scattering of individual particles

- AXION $[m_A \ll eV]$
- number density is large (boson)
- long wavelength
- coherence within detector
- ⇒ observable: classical, oscillating, **background field**

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

AXION COUPLINGS

AXION-PHOTON

a

-hunn,

$$\mathcal{L}_a = \frac{1}{2} \partial_\mu a \, \partial^\mu a + \frac{1}{2} m_a^2 a^2$$

An almost *model-independent axion mass*:

$$m_a \simeq 0.6 \times 10^{-4} \,\mathrm{eV}\left(\frac{10^{11}\mathrm{GeV}}{f_a}\right)$$

$$\mathcal{L}_{a\gamma\gamma} = -rac{lpha}{2\pi} f_a^{-1} g_{a\gamma\gamma} \, \mathbf{E} \cdot \mathbf{B} \, a$$

Primakoff effect: axion detection by their decay into microwave photons in an external magnetic field **B**

$$\begin{array}{c} \hline \\ \hline \\ \psi_i \\ \psi_j \\ \hline \\ \psi_j \\ \hline \\ \end{array}$$

$$\mathcal{L}_a = f_a^{-1} g_{aij} \bar{\psi}_i \gamma^\mu \gamma^5 \psi_j \partial_\mu a$$

In DFSZ axion models couplings with fermions are not suppressed at tree level

INTRODUCTION DETECTION STR	ATEGIES CONVENTIONAL HALOSCO	JPE K&D AXION-Jermion	K&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000 0	0000000	00000000000	000	0000	000000

SENSITIVITY PLOTS:

WE WANT TO MEASURE A MASS AND A COUPLING

Each interaction is modeled through a related coupling

- axion-photon ($g_{a\gamma}$)
- axion-electron (gae)
- axion-nulceon (g_{aN})

(not straightforward to relate one coupling to another)

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	•	0000000	000000000000	000	0000	000000

HINTS, CONSTRAINTS AND MODELS

DETECTION STRATEGIES FROM ASTROPHYSICS AND COSMOLOGY

- axions modify stellar evolution/dynamics
- axions modify intergalactic γ -ray transparency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	●000000	000000000000	000	0000	000000

WHAT WE KNOW ABOUT THE CDM LOCAL DISTRIBUTION

Aquarius simulation http://wwwmpa.mpa-garching.mpg.de/aquarius/ J. I. Read, The local dark matter density, J. of Phys. G 41 vol 6 (2014)

DM can have additional structures on small scales:

 if axions continuously fall into galaxies they would form caustic rings [Sikivie 2011]

 if axion DM density is dominated by few local streams, its velocity distribution can be very narrow (orders of magnitude)

- cosmic axion density $\rho_{\text{DM}} \sim 0.3 \,\text{GeV/cm}^3 \,[\tilde{\rho} = 1] \longrightarrow n_a \sim 3 \times 10^{12} \,(10^{-4} \,\text{eV}/m_a) \,\text{a/cm}^3$
- axion velocities are distributed according to a Maxwellian distribution $f(v) = 4\pi \left(\frac{\beta}{\pi}\right)^{3/2} v^2 \exp(-\beta v^2)$, with $\beta = \frac{3}{2\sigma_v^2}$, σ_v velocity dispersion
- $\sigma_v \sim 10^{-3} \rightarrow$ the axion energy distribution is monochromatic 1 part in 10^6
- ▶ + motion of E in the galaxy \rightarrow they can be seen as a wind with $v \sim 10^{-3} c$

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

MATCHING TO THE AXION LINEWIDTH

When bosons with $m_a < 10 \text{ eV}$ make up a significant fraction of the DM energy density (hp: all), their number density is so large that there are many of them per De Broglie wavelength volume. When that happens, their superposition can be described as a classical field oscillating at a frequency set by their mass, and a coherence time determined by the inverse energy spread $\sim 10^6$ periods of oscillation \implies macroscopic spatial coherence

 a_0 is a very small number ($B_a \sim 10^{-21}$ T) but coherent oscillations allow for detection

COHERENCE TIME

$$au_{
abla a} = 0.68 au_a \simeq 34 \,\mu \mathrm{s} \left(rac{10^{-4} \mathrm{eV}}{m_a}
ight)$$

CORRELATION LENGTH

$$\lambda_{\nabla a} = 0.74 \lambda_a \simeq 10.2 \,\mathrm{m} \left(\frac{10^{-4} \mathrm{eV}}{m_a} \right)$$

$$\int \frac{\partial \omega_a}{\omega_a} \sim 10^{-6}$$

- relaxation time of the magnetized materials/lifetime of the involved atomic levels must not exceed the coherence time
- ► huge number of channels

THE RESONANTLY ENHANCED AXION-PHOTON CONVERSION

If axions are *almost monochromatic* then their conversion to detectable particles (photons) can be accomplished using *high-Q* microwave cavities.

<ロト 4 回 ト 4 三 ト 4 三 ト 1 の 0 0 0</p>

$$- \omega_{\text{TMonl}} = \sqrt{\left(\frac{\epsilon_n}{r}\right)^2 + \left(\frac{l\pi}{h}\right)}$$

for a cylindrical cavity in a solenoidal field, the TM_{onl} are the cavity modes that couple with the axion

- resonant amplification in $[m_a \pm m_a/Q]$
- data in thin slices of parameter space (tuning rod); typically $Q < Q_a \sim 1/\sigma_v^2 \sim 10^6$

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	0000000	000000000000	000	0000	000000

THE RESONANTLY ENHANCED AXION-PHOTON CONVERSION

< ロ ト < 母 ト < 王 ト < 王 ト 三 の < で</p>

THE RESONANTLY ENHANCED AXION-PHOTON CONVERSION

Signal power in the band
$$[m_a \pm m_a/Q]$$
:
 $P_s = \kappa \frac{Q}{m_a} g_{a\gamma}^2 B_e^2 |\mathcal{G}_m|^2 V \varrho_a$

$$= 7.2 \times 10^{-23} \mathrm{W}\left(\frac{\kappa}{0.5}\right) \left(\frac{Q}{10^5}\right) \left(\frac{\mu \mathrm{eV}}{m_a}\right) \left(\frac{g_{a\gamma}}{2 \times 10^{-16} \mathrm{GeV}^{-1}}\right)^2 \left(\frac{B_e}{\mathrm{8T}}\right)^2 \left(\frac{|\mathcal{G}_m|^2}{0.69}\right) \frac{V}{2001} \tilde{\varrho}_a$$

<ロト < 団ト < 三ト < 三ト < 三 ・ つ < で</p>

 INTRODUCTION
 DETECTION STRATEGIES
 CONVENTIONAL HALOSCOPE
 R&D AXION-fermion
 R&D AXION-PHOTON
 ATOMIC TRANSITIONS

 0000
 0
 0000000
 0000
 0000
 0000000
 0000
 0000000

THE RESONANTLY ENHANCED AXION-PHOTON CONVERSION

Signal power in the band
$$[m_a \pm m_a/Q]$$
:

$$P_s = \kappa \frac{Q}{m_a} g_{a\gamma}^2 B_e^2 |\mathcal{G}_m|^2 V \varrho_a$$

$$= 7.2 \times 10^{-23} \mathrm{W} \left(\frac{\kappa}{0.5}\right) \left(\frac{Q}{10^5}\right) \left(\frac{\mu \mathrm{eV}}{m_a}\right) \left(\frac{g_{a\gamma}}{2 \times 10^{-16} \mathrm{GeV}^{-1}}\right)^2 \left(\frac{B_e}{\mathrm{8T}}\right)^2 \left(\frac{|\mathcal{G}_m|^2}{0.69}\right) \frac{V}{2001} \tilde{\varrho}_a$$

for QCD axions, the signal is typically much smaller than noise

$$P_n = T_{sys}\Delta\nu = T_{sys}\frac{m_a}{2\pi Q_a}$$
$$= 3.3 \times 10^{-21} \left(\frac{T_{sys}}{K}\right) \left(\frac{m_a}{\mu \text{eV}}\right) \left(\frac{10^6}{Q_a}\right)$$

 \rightarrow measurement time Δt is such that S > N

- low noise microwave amplifiers
- **quantum sensing (below SQL)**: photon counting techniques can accelerate searches by orders of magnitude for $\nu > 10$ GHz for T < 100 mK

ADMX - WASHINGTON

- after > 30 y of R&D,
 reached sensitivity to DFSZ models
- 100 mK, SQUID
- thin slice around 2.75 μ eV
- no new technology up to $10\,\mu\,{\rm eV}$

PRL 120, 151301 (2018)

HAYSTAC -YALE

- 127 mK, JPA
- first results in a new mass range $(24 \,\mu eV)$
- pushing to higher mass values

PRL 118, 061302 (2018)

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

WHAT ABOUT DIFFERENT MASS RANGES?

In the conventional haloscope the effective volume falls off rapidly with increasing frequency + lower masses limitations (B field)

some non-conventional axion detection strategies and complementarity [different mass ranges, different interactions]

with a focus on recently proposed haloscopes

INTRODUCTION DETECTION S	TRATEGIES CONVENTIONAL HALOSCO	DPE R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000 0	0000000	00000000000	000	0000	000000

AXION-PHOTON COUPLING

- entirely lab experiments (LSW, POL, 5th force)
- helioscopes, stellar astrophysics
- haloscopes/cosmology dependent
- QCD axion allowed

from I.G. Irastorza and J. Redondo, arXiv:1801.08127v2 [hep-ph]

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

HALOSCOPES: DEMONSTRATORS AND NEW PROPOSALS

NOTE: this is just a selection...

INTRODUCTION I	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

$$\mathcal{L}_a = f_a^{-1} g_{aij} \bar{\psi}_i \gamma^\mu \gamma^5 \psi_j \partial_\mu a$$

The interaction term has the form of a spin-magnetic field interaction with ∇a playing the role of a oscillating effective magnetic field

$$\frac{\omega_a}{2\pi} = f_a = \frac{m_a c^2}{h} \simeq 14 \left(\frac{m_a}{58.5 \,\mu \text{eV}}\right) \text{GHz},$$

$$B_a = \frac{g_{aee}}{2e} \sqrt{\frac{\hbar n_a}{m_a c}} m_a v_a$$

$$= 7 \times 10^{-23} \left(\frac{\rho_{\text{dm}}}{0.45 \,\text{GeV}}\right)^{\frac{1}{2}} \left(\frac{m_a}{58.5 \,\mu \text{eV}}\right) \left(\frac{v_a}{220 \,\text{km/s}}\right) \text{T}$$

 $i\hbar \frac{\partial \varphi}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 - \frac{g_p \hbar}{2m} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} a \right] \varphi$ $-\frac{g_p \hbar}{2m} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} a \equiv \underbrace{-2\frac{e\hbar}{2m} \boldsymbol{\sigma}}_{-2\mu_B \boldsymbol{\sigma}} \underbrace{\left(\frac{g_p}{2e} \right) \boldsymbol{\nabla} a}_{\mu_B}$ $\mu_B \text{ the Bohr magneton} \qquad B_a \equiv \frac{g_p}{2e} \boldsymbol{\nabla} a$

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION – fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000 0000 0000	000	0000	000000

AXION DETECTION BY RESONANT INTERACTION WITH e^- SPIN

The interaction term has the form of a spin–magnetic field interaction with ∇a playing the role of a

oscillating effective magnetic field

$$\begin{split} &\frac{\partial_a}{2\pi} = f_a = \frac{m_a c^2}{h} \simeq 14 \left(\frac{m_a}{58.5\,\mu\text{eV}}\right) \text{GHz}, \\ &B_a = \frac{g_{aee}}{2e} \sqrt{\frac{\hbar n_a}{m_a c}} m_a v_a \\ &= 7 \times 10^{-23} \left(\frac{\rho_{\text{dm}}}{0.45\,\text{GeV}}\right)^{\frac{1}{2}} \left(\frac{m_a}{58.5\,\mu\text{eV}}\right) \left(\frac{v_a}{220\,\text{km/s}}\right)^r \end{split}$$

EPR/FMR technique

- By placing a ferrimagnetic sample in a static magnetic field **B** (\perp axion wind) it is possible to tune the Larmor frequency of the electrons to the axion frequency ν_a (spin σ is along the *z* axis).

- $-B_a$ deposits in the sample the power $P_a = B_a \frac{dM}{dt} V_s = 4\pi \gamma \mu_B \nu_a B_a^2 \tau_{\min} n_s V_s$
- $-P_a$ gives rise to RF/ μ wave radiation \Leftarrow axion signal

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	0000000	000000000000000000000000000000000000000	000	0000	0000000

RADIATION DAMPING

The dynamics of the magnetic sample is well described by its magnetization M, whose evolution is given by the Bloch equations. The damping term affects the **maximum allowed coherence** hence the integration time of the magnetic system with respect to the axion driving input P_a .

⇒ strong coupling regime (hybrid photon-magnon mode)

-30

50

-60

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

EXPERIMENTAL CHALLENGES

- magnetized material with spin density 2×10^{28} m⁻³ and FMR linewidth ~ 150 kHz ($\tau_2 \sim 2 \mu s$)
- necessary magnetized sample volume $\sim 100 \, {\rm cm}^3$ to be hosted in $\sim 50 \, {\rm GHz}$ frequency cavities
- ▶ $\sim 10^6$ Q-factor cavity/cavities
- ▶ ppm level uniformity and high stability of the 2 T magnetic field
- ► signal detection beyond SQL with linear amplifiers ⇒ single-photon microwave detectors
- ▶ 100 mK working temperature of the complete apparatus
- frequency tunability

 \rightarrow reducing the noise [quantum counter]

five 1-mm YIG spheres ($V_s = 2.6 \text{ mm}^3$) HEMT low noise cryogenic amplifier

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	0000000	000000000000000000000000000000000000000	000	0000	000000

0000 0 0000000 000000 000 000 000000000	INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
	0000	0	0000000	000000000000000000000000000000000000000	000	0000	000000

axion DM field \equiv oscillating EDMs

 $\theta(t) \sim \theta_0 + \theta_{\approx} \cos(m_A t), \qquad \theta_{\approx} \sim 4 \times 10^{-19} \text{ fixed by } \tilde{\rho}_A - p \text{ and } n \text{ have EDMs } \propto \theta \implies \text{their EDMs trace the axion DM oscillations: } d_n(t) \simeq 0.0024 \times \theta_{\approx} \cos(\omega t) \text{ e fm.}$

DETECTION STRATEGY: a useful analogy

the ferroelectric material displays *intrinsic* electric fields E_{int} at the nucleus position $d_n(t) \cdot E_{int} \iff \mu_N B_{\perp}(t)$ i.e. the interaction of the induced nEDM with E_{int} is equivalent to the interaction of the spin with an oscillating *B*-field transverse to $B_e(B_{\perp}(t))$

CASPEr-Electric

0000 0 0000000 000000 000 000 000000000	INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
	0000	0	0000000	000000000000000000000000000000000000000	000	0000	000000

axion DM field \equiv oscillating EDMs

 $\theta(t) \sim \theta_0 + \theta_{\approx} \cos(m_A t), \qquad \theta_{\approx} \sim 4 \times 10^{-19}$ fixed by $\tilde{\rho}_A - p$ and *n* have EDMs $\propto \theta \implies$ their EDMs trace the axion DM oscillations: $d_n(t) \simeq 0.0024 \times \theta_{\approx} \cos(\omega t)$ e fm.

DETECTION STRATEGY: a useful analogy

the ferroelectric material displays *intrinsic* electric fields E_{int} at the nucleus position $d_n(t) \cdot E_{int} \iff \mu_N B_{\perp}(t)$ i.e. the interaction of the induced nEDM with E_{int} is equivalent to the interaction of the spin with an oscillating *B*-field transverse to $B_e(B_{\perp}(t))$

 \implies a resonant increase of the transverse magnetization when $B_{\perp}(t)$ oscillates at a frequency matching ω_L is expected!

CASPEr-Electric

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$M_{\perp} \simeq p n_N \mu_N |d_n| E_{\rm int} t$$

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	0000000	00000000000000	000	0000	000000

axion DM field \equiv oscillating EDMs

 $\theta(t) \sim \theta_0 + \theta_{\approx} \cos(m_A t), \qquad \theta_{\approx} \sim 4 \times 10^{-19} \text{ fixed by } \tilde{\rho}_A - p \text{ and } n \text{ have EDMs } \propto \theta \implies \text{their EDMs trace the axion DM oscillations: } d_n(t) \simeq 0.0024 \times \theta_{\approx} \cos(\omega t) \text{ e fm.}$

DETECTION STRATEGY: a useful analogy

the molecules are polarized so as to develop large *intrinsic* electric fields E_{int} at the nucleus position $d_n(t) \cdot E_{int} \iff \mu_N B_{\perp}(t)$ i.e. the interaction of the induced nEDM with E_{int} is equivalent to the interaction of the spin with an oscillating *B*-field transverse to $B_e(B_{\perp}(t))$

 \implies a resonant increase of the transverse magnetization when $B_{\perp}(t)$ oscillates at a frequency matching ω_L is expected!

PROSPECTED SENSITIVITY

* phase I [²⁰⁷Pb nuclear spins in PMN-PT sample]
 * phase II and III [sensitivity to QCD axion m_q < neV]

$M_{\perp} \simeq p n_N \mu_N |d_n| E_{\rm int} t$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	•00	0000	000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SEARCHING THE AXION AT HIGHER MASSES

Broadband Radiometric Axion SearcheS

dish antenna concept: photons are emitted by reflective/refractive surfaces in a magnetic field B_e and the DM halo field B_a

$$E_a = rac{g_{a\gamma}B_e a(t)}{arepsilon}$$
 ALP field in a medium with dielectric constant $arepsilon$

 \rightarrow to satisfy the continuity conditions at a boundary, the pure ALP-like wave goes with photon-like waves

$$rac{P_{
m dish}}{P_{
m haloscope}} \propto rac{m_a^2 \mathcal{A}}{Q}$$

a dish with a magnetized area of $A \sim 1 \text{ m}^2$ competes with an $Q \sim Q_a \sim 10^6$ haloscope at $m_a \sim 200 \,\mu\text{eV}$

Sac

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

SEARCHING THE AXION AT HIGHER MASSES

Magnetized Disc and Mirror Axion Experiment

by adjusting the distances between the layers, the frequency dependence of the boosted sensitivity can be adjusted to different bandwidths

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	0000000	000000000000	000	●000	000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AXION DETECTION WITH ATOMIC TRANSITIONS

- axion-induced transitions take place between Zeeman-split ground state levels in rare-earth doped materials
- transitions involve electrons in the 4f shell (as if they were free atoms...)
- ► a tunable laser pumps the excited atoms to a fluorescent level
- crystal immersed in LHe and superfluid He

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

AXION DETECTION IN RE-DOPED MATERIALS

For one mole of target atoms (RE-dopant) in the ground state $|0\rangle$, the transition rate to the level $|i\rangle$ by axion absorption on resonance (P. Sikivie PRL (2016))

$$N_A R_i = 8.5 \times 10^{-3} \left(\frac{\rho_a}{0.4 \, \text{GeV/cm}^3}\right) \left(\frac{E_a}{330 \, \mu \text{eV}}\right)^2 g_i^2 \left(\frac{\overline{v^2}}{10^{-6} c^2}\right) \left(\frac{\min(t, \tau, \tau_{\nabla a})}{10^{-6} \, \text{s}}\right) \, \text{Hz}$$

where R_i is the transition rate of a single target atom, N_A is the Avogadro number, $E_a = h\nu_a$ is the axion energy

 \rightarrow spectroscopic properties at "high" RE concentration (0.1 %, i.e. $\ge 10^{19}$ axion target electrons/cm³) in ~ 11 - active volume

the linewidth of the transition driven by the laser must be narrower than the energy difference between the atomic levels $|0\rangle$ and $|i\rangle$

Sac

AXION DETECTION IN RE-DOPED MATERIALS: WORKING T

Thermal occupation of the Zeeman upper level needs to be suppressed

fundamental noise limit \rightarrow thermal excitation of the Zeeman excited level

$$N_A R_t = \bar{n}/\tau$$

 $\bar{n} = N_A \exp(-E_a/kT)$ average number of excited ions in the energy level E_a SNR= 3, statistically significant number of counts

within $t_m = 1 h$

 \rightarrow thermal excitation rate $R_t = 6 \times 10^{-3} \, \text{Hz}$

 $\tau = 1\,\mathrm{ms}$ level lifetime $\rightarrow \bar{n} \leqslant 5\cdot 10^{-6}$

Axions with mass greater than 80 GHz can be searched, provided $T \le 57$ mK.

 \implies ultra-cryogenic ($T \sim 100 \text{ mK}$) optical apparatus Laser-related backgrounds ($\sim 10 \text{ W/cm}^2$)?

The pump laser does not affect the thermal population of the Zeeman excited level [up to a \sim W/cm² intensity]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	00000

AXION DETECTION STRATEGIES: THERE'S MUCH MORE!

- DM HALOSCOPES: interaction of axions forming DM Galactic halo with SM elementary particles (photons, nuclei, and electrons)
 - ADMX, HAYSTAC (ADMX-HF)
 - QUAX
 - CASPEr-wind
 - CASPEr-Electric (EDM induced on nuclear spin)
 - ATOMIC TRANSITIONS
- HELIOSCOPES: axion production in the Sun
 - CAST, Baby-IAXO
 - TASTE, SÚMICO
- ► PURE LABORATORY EXPERIMENTS
 - LSW (Light Shining through Wall), PVLAS (vacuum polarization)
 - axion-mediated 5th force measurements

from I.G. Irastorza and J. Redondo, arXiv:1801.08127v2 [hep-ph]

500

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	0000000	000000000000	000	0000	000000

AXION-ELECTRON COUPLING

590

INTRODUCTION	DETECTION STRATEGIES	CONVENTIONAL HALOSCOPE	R&D AXION—fermion	R&D AXION-PHOTON	ATOMIC TRANSITIONS	
0000	0	000000	000000000000	000	0000	000000

Energy level diagram of RE^{3+} in $LaCl_{3}$

- 4f electrons - electrostatic interaction 10^4 cm⁻¹ – further splitting by spin-orbit interaction 10^3 cm^{-1} – crystal field (Stark splitting)

ENERGY SPLITTINGS IN RE-DOPED MATERIALS

 $10^4 \,\mathrm{cm}^{-1} = 1.24 \,\mathrm{eV}$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > 三 = の < で</p>