Axions couplings in non-standard axion models (about axions and their many phobias)

Invisibles I 8 Workshop, Karlsruhe - 05.09.18

Luca Di Luzio

In 10 years from now ?

- A great opportunity to discover the QCD axion !
- ★ Time <u>now</u> to get prepared and rethink the QCD axion

[See also talks by Prateek Agrawal and Rachel Houtz yesterday]

- I. Astro bounds on axion mass [critical approach]
- 2. Axion couplings [in standard axion models]
- 3. Re-opening the axion window [astrophobia = nucleophobia + electrophobia]
- 4. Flavour complementarity

Based on: LDL, Mescia, Nardi 1610.07593 (PRL) + 1705.05370 (PRD) LDL, Mescia, Nardi, Panci, Ziegler 1712.04940 (PRL)

Astro bounds

- Stars as powerful sources of <u>light</u> and <u>weakly coupled</u> particles [see e.g. Raffelt, hep-ph/0611350]
 - light: $m_a \lesssim 10 T_{\star}$ (e.g. typical interior temperature of the Sun ~ 1 keV)
 - weakly coupled (otherwise we would have already seen them in labs)

Astro bounds

- Stars as powerful sources of <u>light</u> and <u>weakly coupled</u> particles [see e.g. Raffelt, hep-ph/0611350]
 - light: $m_a \lesssim 10 T_{\star}$ (e.g. typical interior temperature of the Sun ~ I keV)
 - weakly coupled (otherwise we would have already seen them in labs)
- constraints from "energy loss", relevant when more interacting than neutrinos

neutrino interactions (d=6 op.) axion interactions (d=5 op.)

$$G_F m_e^2 \simeq 10^{-12}$$
 $\frac{m_e}{f_a} \simeq 10^{-12} \left(\frac{10^8 \text{ GeV}}{f_a}\right)$

axions are a perfect target ! $m_a \sim \Lambda_{\rm QCD}^2 / f_a \simeq 0.1 \ {\rm eV} \left(\frac{10^{\circ} \ {\rm GeV}}{f_a} \right)$

[Ringwald, Rosenberg, Rybka, Particle Data Group (2016)]

Lab exclusions

Astro/cosmo exclusions

DM explained / Astro Hints

Exp. sensitivities

 m_{\perp}

04/14

04/14

04/14

L. Di Luzio (IPPP, Durham) - Axions couplings in non-standard axion models

04/14

• Bound on axion mass is of <u>practical</u> convenience, but misses model dependence !

- All you need is (to solve the strong CP problem)
 - a new spin-0 boson with pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$\frac{a}{f_a} \frac{\alpha_s}{8\pi} G^{\mu\nu}_a \tilde{G}^a_{\mu\nu}$$
 $E(0) \le E(a)$ [Vafa-Witten theorem, PRL 53 (1984)]

• All you need is (to solve the strong CP problem)

a new spin-0 boson with pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$\frac{a}{f_a} \frac{\alpha_s}{8\pi} G^{\mu\nu}_a \tilde{G}^a_{\mu\nu}$$

- generates "model independent" axion couplings to photons, nucleons, electrons, ...

[Theoretical errors from NLO Chiral Lagrangian, Grilli di Cortona et al., 1511.02867]

• All you need is (to solve the strong CP problem)

a new spin-0 boson with pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$rac{a}{f_a}rac{lpha_s}{8\pi}G^{\mu
u}_a ilde{G}^a_{\mu
u}$$

- generates "model independent" axion couplings to photons, nucleons, electrons, ...

$$C_{\gamma} = -1.92(4)$$
 $C_p = -0.47(3)$ $C_n = -0.02(3)$ $C_e \simeq 0$

- EFT breaks down at energies of order fa

Axion models [UV completion]

 Axion: PGB of QCD-anomalous global U(1)_{PQ}; anomalous PQ breaking (fermion sector) + spontaneous PQ breaking (scalar sector)

Axion models [UV completion]

 Axion: PGB of QCD-anomalous global U(1)_{PQ}; anomalous PQ breaking (fermion sector) + spontaneous PQ breaking (scalar sector)

Axion-photon coupling

- Red line set by perturbativity [KSVZ] (going above requires more exotic constructions)
- Blue line corresponds to a 2% 'tuning in theory space'

about photophobia: "... such a cancellation is immoral, but not unnatural" [D. B. Kaplan, (1985)]

Axion-photon coupling

- Message for experimentalists:
- I. The QCD axion might already be in the reach of your experiment !
- 2. Don't stop at E/N = 0 (go deeper if you can)

Astrophobia

- Is it possible to decouple the axion both from nucleons and electrons ?
 - nucleophobia + electrophobia = astrophobia
- Why interested in such constructions ? [LDL, Mescia, Nardi, Panci, Ziegler 1712.04940]
 - I. is it possible at all ?
 - 2. would allow to relax the upper bound on axion mass by ~ 1 order of magnitude
 - 3. would improve visibility at IAXO (axion-photon)
 - 4. would improve fit to stellar cooling anomalies (axion-electron) [Giannotti et al. 1708.02111]
 - 5. unexpected connection with flavour

Astrophobia

- Is it possible to decouple the axion both from nucleons and electrons ?
 - nucleophobia + electrophobia* = astrophobia
- Why interested in such constructions ? [LDL, Mescia, Nardi, Panci, Ziegler 1712.04940]
 - I. is it possible at all ?
 - 2. would allow to relax the upper bound on axion mass by ~ 1 order of magnitude
 - 3. would improve visibility at IAXO (axion-photon)
 - 4. would improve fit to stellar cooling anomalies (axion-electron) [Giannotti et al. 1708.02111]
 - 5. unexpected connection with flavour

*conceptually easy (e.g. couple the electron to 3rd Higgs uncharged under PQ)

Conditions for nucleophobia

• Axion-nucleon couplings [Kaplan NPB 260 (1985), Srednicki NPB 260 (1985), Georgi, Kaplan, Randall PLB 169 (1986), ..., Grilli di Cortona et al. 1511.02867] v $\mathcal{L}_{q} = \frac{\partial_{\mu}a}{2f_{c}} c_{q} \,\overline{q} \gamma^{\mu} \gamma_{5} q \qquad q = (u, d, s, \ldots)$ npEFT-1: quarks and gluons (in the basis where c_q contains aGGtilde contrib.) π e $\mathcal{L}_N = \frac{\partial_\mu a}{2f_a} C_N \overline{N} S^\mu N \qquad N = (p, n)$ aEFT-II: non-relativistic nucleons

Conditions for nucleophobia

• Axion-nucleon couplings

[Kaplan NPB 260 (1985), Srednicki NPB 260 (1985), Georgi, Kaplan, Randall PLB 169 (1986), ..., Grilli di Cortona et al. 1511.02867]

$$f_{a}$$

$$v$$

$$\mathcal{L}_{q} = \frac{\partial_{\mu}a}{2f_{a}}c_{q} \,\overline{q}\gamma^{\mu}\gamma_{5}q$$

$$n$$

$$p$$

$$\pi$$

$$e$$

$$\mathcal{L}_{N} = \frac{\partial_{\mu}a}{2f_{a}}C_{N}\overline{N}S^{\mu}N$$

$$\langle p|\mathcal{L}_q|p\rangle = \langle p|\mathcal{L}_N|p\rangle$$

$$s^{\mu}\Delta q \equiv \langle p | \overline{q} \gamma_{\mu} \gamma_{5} q | p \rangle$$

$$C_p + C_n = (c_u + c_d) (\Delta_u + \Delta_d) - 2\delta_s \quad [\delta_s \approx 5\%]$$

$$C_p - C_n = (c_u - c_d) (\Delta_u - \Delta_d)$$

Independently of matrix elements:

(1):
$$C_p + C_n \approx 0$$
 if $c_u + c_d = 0$
(2): $C_p - C_n = 0$ if $c_u - c_d = 0$

$$\mathcal{L}_a \supset \frac{a}{f_a} \frac{\alpha_s}{8\pi} G\tilde{G} + \frac{\partial_\mu a}{v_{PQ}} \left[X_u \,\overline{u} \gamma^\mu \gamma_5 u + X_d \,\overline{d} \gamma^\mu \gamma_5 d \right]$$

KSVZ/DFSZ no-go

KSVZ/DFSZ no-go

$$\frac{X_u}{N} \to c_u = \frac{X_u}{N} - \frac{m_d}{m_d + m_u} \qquad \qquad \frac{X_d}{N} \to c_d = \frac{X_d}{N} - \frac{m_u}{m_d + m_u}$$

KSVZ/DFSZ no-go

$$\mathcal{L}_{a} \supset \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} \tilde{G} \tilde{G} + \frac{\partial_{\mu}a}{v_{PQ}} \left[X_{u} \,\overline{u} \gamma^{\mu} \gamma_{5} u + X_{d} \,\overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\frac{\partial_{\mu}a}{2f_{a}} \left[\frac{X_{u}}{N} \,\overline{u} \gamma^{\mu} \gamma_{5} u + \frac{X_{d}}{N} \,\overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

T 7

$$\frac{X_u}{N} \to c_u = \frac{X_u}{N} - \frac{m_d}{m_d + m_u} \qquad \frac{X_d}{N} \to c_d = \frac{X_d}{N} - \frac{m_u}{m_d + m_u}$$

st condition
$$0 = c_u + c_d = \frac{X_u + X_d}{N} - 1$$

2nd condition
$$0 = c_u - c_d = \frac{X_u - X_d}{N} - \underbrace{\frac{m_d - m_u}{m_d + m_u}}_{\simeq 1/3}$$

KSVZ/DFSZ no-go

Ist condition
$$0 = c_u + c_d = \frac{X_u + X_d}{N} - 1$$

$$\begin{cases}
\begin{array}{c}
 KSVZ \\
 X_u = X_d = 0 \\
 DFSZ \\
 N = n_g(X_u + X_d) \\
 \hline
 N = n_g(X_u + X_d) \\
 \hline
 Ing - 1
\end{array}$$

KSVZ/DFSZ no-go

Nucleophobia can be obtained in DFSZ models with non-universal (i.e. generation dependent) PQ charges, such that

$$N = N_1 \equiv X_u + X_d$$

Ist condition
$$0 = c_u + c_d = \frac{X_u + X_d}{N} - 1$$

$$\begin{cases}
\frac{KSVZ}{X_u = X_d = 0} & -1 \\
\frac{DFSZ}{N = n_g(X_u + X_d)} & \frac{1}{n_g} - 1
\end{cases}$$

L. Di Luzio (IPPP, Durham) - Axions couplings in non-standard axion models

indistances .

Implementing nucleophobia

• <u>Simplification</u>: assume 2+1 structure $X_{q_1} = X_{q_2} \neq X_{q_3}$

$$N \equiv N_1 + N_2 + N_3 = N_1 \qquad \qquad N_1 = N_2 = -N_3$$

Implementing nucleophobia

• <u>Simplification</u>: assume 2+1 structure $X_{q_1} = X_{q_2} \neq X_{q_3}$

 $N \equiv N_1 + N_2 + N_3 = N_1$ $N_1 = N_2 = -N_3$

• $N_2 + N_3 = 0$ easy to implement with 2HDM (H₁, H₂, Y(H_{1,2}) = -1/2)

$$\mathcal{L}_{Y} \supset \bar{q}_{3}u_{3}H_{1} + \bar{q}_{3}d_{3}\tilde{H}_{2} + (\bar{q}_{3}u_{2}...+..) + \bar{q}_{2}u_{2}H_{2} + \bar{q}_{2}d_{2}\tilde{H}_{1} + (\bar{q}_{2}d_{3}...+..) \Rightarrow \mathcal{N}_{3^{rd}} = 2X_{q_{3}} - X_{u_{3}} - X_{d_{3}} = X_{1} - X_{2} \Rightarrow \mathcal{N}_{2^{nd}} = 2X_{q_{2}} - X_{u_{2}} - X_{d_{2}} = X_{2} - X_{1}$$

• Ist condition <u>automatically</u> satisfied

Implementing nucleophobia

• <u>Simplification</u>: assume 2+1 structure $X_{q_1} = X_{q_2} \neq X_{q_3}$

 $N \equiv N_1 + N_2 + N_3 = N_1$ $N_1 = N_2 = -N_3$

• $N_2 + N_3 = 0$ easy to implement with 2HDM (H₁, H₂, Y(H_{1,2}) = -1/2)

$$\mathcal{L}_Y \supset \bar{q}_3 u_3 H_1 + \bar{q}_3 d_3 \tilde{H}_2 + (\bar{q}_3 u_2 \dots + \dots) + \bar{q}_2 u_2 H_2 + \bar{q}_2 d_2 \tilde{H}_1 + (\bar{q}_2 d_3 \dots + \dots)$$

$$\Rightarrow \mathcal{N}_{3^{rd}} = 2X_{q_3} - X_{u_3} - X_{d_3} = X_1 - X_2 \Rightarrow \mathcal{N}_{2^{nd}} = 2X_{q_2} - X_{u_2} - X_{d_2} = X_2 - X_1$$

• 2nd condition can be implemented via a 10% tuning

$$\tan \beta = v_2/v_1 \qquad c_u - c_d = \underbrace{\frac{X_u - X_d}{N}}_{c_{\beta}^2 - s_{\beta}^2} - \underbrace{\frac{m_d - m_u}{m_u + m_d}}_{\simeq \frac{1}{3}} = 0 \qquad \Rightarrow \qquad c_{\beta}^2 \simeq 2/3$$

Flavour connection

Nucleophobia implies flavour violating axion couplings !

 $[\mathrm{PQ}_d, Y_d^{\dagger} Y_d] \neq 0 \qquad \longrightarrow \qquad C_{ad_i d_j} \propto (V_d^{\dagger} \mathrm{PQ}_d V_d)_{i \neq j} \neq 0$

e.g. RH down rotations become physical

Flavour connection

Nucleophobia implies flavour violating axion couplings !

 $[\mathrm{PQ}_d, Y_d^{\dagger} Y_d] \neq 0 \qquad \longrightarrow \qquad C_{ad_i d_i} \propto (V_d^{\dagger} \mathrm{PQ}_d V_d)_{i \neq j} \neq 0$

e.g. RH down rotations become physical

Plethora of low-energy flavour experiments probing

$$\frac{\partial_{\mu}a}{2f_a}\,\overline{f}_i\gamma^{\mu}(C^V_{ij}+C^A_{ij}\gamma_5)f_j$$

Astrophobic axion models

- KSVZ and DFSZ are well-motivated minimal benchmarks, but...
 - axion couplings are UV dependent
 - worth to think about alternatives when confronting exp. bounds and sensitivities

- KSVZ and DFSZ are well-motivated minimal benchmarks, but...
 - axion couplings are UV dependent
 - worth to think about alternatives when confronting exp. bounds and sensitivities
- Astrophobic Axions (suppressed couplings to nucleons and electrons)
 - I. relax astro bounds on axion mass by \sim I order of magnitude
 - 2. improve visibility at IAXO
 - 3. improve fit to stellar cooling anomalies
 - 4. can be complementarily tested in axion flavour exp.

DM in the heavy axion window

• Post-inflationary PQ breaking with $N_{DW} \neq I$

[Kawasaki, Saikawa, Sekiguchi, 1412.0789 1709.07091]

Stellar cooling anomalies

- Hints of excessive cooling in WD+RGB+HB can be explained via an axion
- requires a sizeable axion-electron coupling in a region disfavoured by SN bound*
- 0.8 WD+RGB+HB 0.6 $g_{a\,\gamma}[10^{-10}{
 m GeV^{-1}}]$ 0.4 σ PS II 0.2 0.0 0.5 1.5 2.0 3.0 0.0 1.0 2.5 $g_{\rm ae} \ [10^{-13}]$

[Giannotti et al. 1708.02111]

Model	Global fit includes	$\int f_a \left[10^8 \mathrm{GeV} \right]$	$m_a \; [\mathrm{meV}]$	$\tan\beta$	$\chi^2_{\rm min}/{\rm d.o.f.}$
DFSZ I	WD,RGB,HB	0.77	74	0.28	14.9/15
	WD,RGB,HB,SN	11	5.3	140	16.3/16
	WD,RGB,HB,SN,NS	9.9	5.8	140	19.2/17
DFSZ II	WD,RGB,HB	1.2	46	2.7	14.9/15
	WD,RGB,HB,SN	9.5	6.0	0.28	15.3/16
	WD,RGB,HB,SN,NS	9.1	6.3	0.28	21.3/17

Nucleophobic axion improves fit...

*SN bound a factor ~4 weaker than PDG one ?

[Chang, Essig, McDermott 1803.00993]

Axion coupling to photons

• Axion effective Lagrangian

[See e.g. Grilli di Cortona et al., 1511.02867]

$$\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 + \frac{a}{f_a} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{1}{4} a g^0_{a\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad g^0_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} \frac{E}{N}$$

field-depended chiral transformation to eliminate aGGtilde:

 $q = \begin{pmatrix} u \\ d \end{pmatrix} \to e^{i\gamma_5 \frac{a}{2f_a}Q_a} \begin{pmatrix} u \\ d \end{pmatrix}$

 $\operatorname{tr} Q_a = 1$

Axion coupling to photons

• Axion effective Lagrangian

[See e.g. Grilli di Cortona et al., 1511.02867]

$$\mathcal{L}_{a} = \frac{1}{2} (\partial_{\mu} a)^{2} + \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} \mathcal{C}_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{1}{4} a g^{0}_{a\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad g^{0}_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_{a}} \frac{E}{N}$$

$$q = \begin{pmatrix} u \\ d \end{pmatrix} \rightarrow e^{i\gamma_{5}} \frac{a}{2f_{a}} Q_{a} \begin{pmatrix} u \\ d \end{pmatrix}$$

$$\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 + \frac{1}{4} a g_{a\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

 $\operatorname{tr} Q_a = 1$

Pheno preferred Q's in KSVZ

	R_Q	\mathcal{O}_{Qq}	$\Lambda_{\rm Landau}^{\rm 2-loop}[{\rm GeV}]$	E/N
	(3, 1, -1/3)	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3
	(3, 1, 2/3)	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34}(g_1)$	8/3
R^w_Q	(3, 2, 1/6)	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3
	(3, 2, -5/6)	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27}(g_1)$	17/3
	(3, 2, 7/6)	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22}(g_1)$	29/3
	(3, 3, -1/3)	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30}(g_2)$	14/3
	(3, 3, 2/3)	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27}(g_2)$	20/3
R_Q^s	(3, 3, -4/3)	$\overline{Q}_L d_R H^{\dagger 2}$	$3.5 \cdot 10^{18}(g_1)$	44/3
	$(\overline{6}, 1, -1/3)$	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$2.3 \cdot 10^{37}(g_1)$	4/15
	$(\overline{6}, 1, 2/3)$	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$5.1 \cdot 10^{30}(g_1)$	16/15
	$(\overline{6}, 2, 1/6)$	$\overline{Q}_R \sigma_{\mu u} q_L G^{\mu u}$	$7.3 \cdot 10^{38}(g_1)$	2/3
	(8, 1, -1)	$\overline{Q}_L \sigma_{\mu\nu} e_R G^{\mu\nu}$	$7.6 \cdot 10^{22}(g_1)$	8/3
	(8,2,-1/2)	$\overline{Q}_R \sigma_{\mu\nu} \ell_L G^{\mu\nu}$	$6.7 \cdot 10^{27}(g_1)$	4/3
	(15, 1, -1/3)	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$8.3 \cdot 10^{21}(g_3)$	1/6
	(15, 1, 2/3)	$\overline{\overline{Q}}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$7.6 \cdot 10^{21}(g_3)$	2/3

• Q's short lived + no Landau poles < Planck

Redefining the axion window

Redefining the axion window

Boosting E/N in DFSZ

• Potentially large E/N due to electron PQ charge

$$\frac{E}{N} = \frac{\sum_{j} \left(\frac{4}{3} X_{u}^{j} + \frac{1}{3} X_{d}^{j} + X_{e}^{j}\right)}{\sum_{j} \left(\frac{1}{2} X_{u}^{j} + \frac{1}{2} X_{d}^{j}\right)} \qquad \qquad \mathcal{L}_{Y} = Y_{u} \overline{Q}_{L} u_{R} H_{u} + Y_{d} \overline{Q}_{L} d_{R} H_{d} + Y_{e} \overline{L}_{L} e_{R} H_{e} + \text{h.c.}$$

- with n_H Higgs doublets and a SM singlet ϕ , enhanced global symmetry

$$U(1)^{n_H+1} \to U(1)_{\rm PQ} \times U(1)_Y$$

must be explicitly broken in the scalar potential via non-trivial invariants (e.g. $H_u H_d \Phi^2$)

non-trivial constraints on PQ charges of SM fermions

Boosting E/N in DFSZ

• Potentially large E/N due to electron PQ charge

$$\frac{E}{N} = \frac{\sum_{j} \left(\frac{4}{3}X_{u}^{j} + \frac{1}{3}X_{d}^{j} + X_{e}^{j}\right)}{\sum_{j} \left(\frac{1}{2}X_{u}^{j} + \frac{1}{2}X_{d}^{j}\right)}$$

 $\mathcal{L}_Y = Y_u \overline{Q}_L u_R H_u + Y_d \overline{Q}_L d_R H_d$ $+ Y_e \overline{L}_L e_R H_e + \text{h.c.}$

- Clockwork-like scenarios allow to boost E/N [LDL, Mescia, Nardi 1705.05370]
- n up-type doublets which *do not couple* to SM fermions (n ≤ 50 from LP condition)

