

Axion Minicluster Power Spectrum and Mass Function

<u>Andreas Pargner</u>, Thomas Schwetz based on: JCAP 1712 (2017), no. 12 038, [1708.04466]

Theoretical Astroparticle Physics, Institute for Nuclear Physics (IKP)

Axion Miniclusters

Karlsruhe Institute of Technology

Inhomogeneous energy density:

- Large overdensities can decouple from Hubble expansion already in radiation dominated era
- Collapse into small and dense objects
- Axion Miniclusters

 $\rho_a(x) \sim m_a^2 f_{\rm PO}^2 \theta_i^2(x)$

Distribution in mass and size of Axion Miniclusters is of great importance for understanding

Influence of Axion Field on Cosmology and Direct Detecion Experiments.

Axion Field Evolution

Follow evolution of axion field and derive power spectrum of energy density

$$\ddot{\theta}_k + 3H\dot{\theta}_k + \frac{k^2}{a^2}\theta_k + m^2(T)\theta_k = 0$$

Problem of scales $T_{\rm PQ} \gg T_{\rm osc} \sim T_{\rm QCD}$

Use suitable initial "white noise" conditions and start evolving at $T_i \gtrsim T_{
m osc}$

$$\langle \theta_k \theta_{k'} \rangle = (2\pi)^3 \delta(\vec{k} - \vec{k'}) P_{\theta}(k) \quad P_{\theta}(k) = \frac{8\pi^4}{3\sqrt{\pi}K^3} e^{-k^2/K^2}$$

 $K = a_i H_i$ is the cut-off wave number, field should be uncorrelated on larger scales

Axion Energy Density Power Spectrum

Andreas Pargner – Axion minicluster power spectrum and mass function

Size and Mass of Axion Miniclusters

- Fluctuations are not small.
- Decoupling from Hubble Flow already in radiation dominated era
- Standard Methods not applicable.
- Consider collapse in an expanding background.
- Develop and use a modified Press-Schechter approach to determine distribution of MCs in mass and size.

Size and Mass of Axion Miniclusters

$f_{\rm PQ} \ [{\rm GeV}]$	$M_{\rm peak} \left[M_{\odot} \right]$	M range $[M_{\odot}]$	$r_{\rm ta}^{\rm peak}$ [km]	$r_{\rm ta}$ range [km]
10^{10}	4×10^{-16}	$[2 \times 10^{-17}, 1 \times 10^{-14}]$	4×10^4	$[2 imes 10^4, 2 imes 10^5]$
10^{11}	2×10^{-14}	$[5 \times 10^{-16}, 3 \times 10^{-13}]$	2×10^5	$[4\times 10^4, 7\times 10^5]$
10^{12}	8×10^{-13}	$[6 \times 10^{-14}, 2 \times 10^{-11}]$	2×10^6	$[7 imes 10^5, 7 imes 10^6]$

Fate of Miniclusters: How are the MCs today?

Further collapse into stable configuration? How do these configuration look like? Is the collapse violent? Are Axion Stars formed inside the MCs?

$$i\partial_t \phi = -\frac{\Delta\phi}{2m} - g\left(\phi^*\phi\right)\phi + m\Phi_N\phi$$
$$\Phi_N = 4\pi G m \phi^*\phi$$

Fate of Miniclusters: How are the MCs today?

Further collapse into stable configuration? How do these configuration look like? Is the collapse violent? Are Axion Stars formed inside the MCs?

$$i\partial_t \phi = -\frac{\Delta \phi}{2m} - g\left(\phi^* \phi\right)\phi + m\Phi_N \phi$$
$$\Phi_N = 4\pi G m \phi^* \phi$$

