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Quasi-local gravitational energy 

We want to compute a quantity which can be ‘locally’ sensitive 
to the strength of the gravitational field. 

We associate to a given hypersurface of a spacetime, the 
integral of the trace of the extrinsic curvature. 

We take a point and send geodesics  of 
fixed length normal to the time direction.

This defines a spacelike hypersurface     .

We can construct the surface as
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Strategy  

Compute the QLE for 3-spheres in 

Compute the QLE for ‘3-spheres’ in 

M5

M4 × S1
One compact dimension 

−π l ≤ y ≤ π l
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Summary and Outlook 

The quasi-local energy could provide an energetical argument 
in favour of compactified or uncompactified spacetimes.

This is a proof of concept, but more general setups need to be 
studied, such as the introduction of fluxes in order to stabilise 
the compact dimension.

Work is ongoing regarding the use of the quasi-local energy as 
a tool to compute the total energy of full spacetimes in a 
more covariant way. 



QLE and compactification 
Codim-2 spheres  Codim-2 spheres  M5 M4 × S1

y1 = T,
i=5

∑
i=2

(yi)2 ≡ L2 .

The two normal vectors and the three tangent vectors read   

nA ≡ ( ∂
∂t

,
yi

L
∂

∂yi ) A = 1,2 tθ1
= L (0,c θ1 s θ2 s θ3, c θ1 s θ2 cθ3, c θ1 cθ2, − sθ1)

tθ2
= L (0,s θ1 c θ2 s θ3, s θ1 c θ2 cθ3, − sθ1 sθ2,0)

tθ3
= L (0,s θ1 s θ2 c θ3, − s θ1 s θ2 sθ3,0,0)

(Spherical coordinates)

For both, the embedding 
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Quasi-local gravitational energy 

We can define the surface as
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QLE and compactification 

y1 = T,
i=5

∑
i=2

(yi)2 ≡ L2 .

Surfaces of constant time and radius

The two normal vectors and the three tangent vectors are the same 
for the two spacetimes  

Same value for the extrinsic 
curvature  K

Q = ∫Σ
K

Difference between 
the two spacetimes

But for the QLE the integration range is different 
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= 6π2L2 for L ≤ lπ
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