Axion dark matter indirect detection

Ben Safdi Leinweber Center for Theoretical Physics

University of Michigan

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Detecting Axion Dark Matter with Radio Observations of Neutron Stars

A. Hook, Y. Kahn, **B.S.**, Z. Sun: 1804.03145 A. Chen. **B.S.**, Z. Sun: to appear 2018

Brief Review of Axion-Photon Mixing

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Axion solves strong CP problem (neutron EDM $\propto ar{ heta}$) Peccei,

Quinn 1977; Weinberg 1978; Wilczek 1978

$$\mathcal{L}_{\mathsf{axion}} = -\left(ar{ heta} + rac{a}{f_a}
ight) rac{g^2}{32\pi^2} G_{\mu
u} ilde{G}^{\mu
u}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Axion solves strong CP problem (neutron EDM $\propto \bar{ heta}$) Peccei,

Quinn 1977; Weinberg 1978; Wilczek 1978

$$\mathcal{L}_{\mathsf{axion}} = -\left(ar{ heta} + rac{a}{f_a}
ight) rac{g^2}{32\pi^2} G_{\mu
u} ilde{G}^{\mu
u}$$

QCD gives a mass:

$$m_a \approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \text{ eV}\left(\frac{10^{16} \text{ GeV}}{f_a}\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Axion solves strong CP problem (neutron EDM $\propto ar{ heta}$) Peccei,

Quinn 1977; Weinberg 1978; Wilczek 1978

$$\mathcal{L}_{\mathsf{axion}} = -\left(ar{ heta} + rac{a}{f_a}
ight) rac{g^2}{32\pi^2} G_{\mu
u} ilde{G}^{\mu
u}$$

QCD gives a mass:

$$m_a \approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \text{ eV}\left(\frac{10^{16} \text{ GeV}}{f_a}\right)$$

Axion couples to QED

$${\cal L}=-rac{1}{4}g_{a\gamma\gamma}aF_{\mu
u} ilde{F}^{\mu
u} \quad g_{a\gamma\gamma}\propto rac{lpha_{\sf EM}}{f_a}$$

Axion-photon mixing

$$\mathcal{L} = -\frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \sim g_{a\gamma\gamma} \underbrace{a}_{\text{dynam. dynam.}} \cdot \underbrace{\mathbf{B}}_{\text{ext.}}$$

$$\blacktriangleright P_{a \to \gamma} \sim B_{\text{ext}}^2 g_{a \gamma \gamma}^2 L^2$$

► L determined by B_{ext} geometry and axion wavelength m_a^{-1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

High B field converts axions -> photons

•
$$P_{a \to \gamma} \sim B_{\text{ext}}^2 g_{a \gamma \gamma}^2 L^2$$
: what is L?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

High B field converts axions -> photons

- $P_{a \to \gamma} \sim B_{\text{ext}}^2 g_{a \gamma \gamma}^2 L^2$: what is L?
- Axion and photon have same energy $\omega,$ but momentum mismatch $\delta k \sim m_a^2/\omega$

High B field converts axions -> photons

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $P_{a \to \gamma} \sim B_{\text{ext}}^2 g_{a \gamma \gamma}^2 L^2$: what is L?
- Axion and photon have same energy ω , but momentum mismatch $\delta k \sim m_a^2/\omega$

•
$$\delta k \ll L_{CAST}^{-1}$$
: $L \sim L_{CAST}$

(日) (日) (日) (日) (日) (日) (日)

High B field converts axions -> photons

- $P_{a \to \gamma} \sim B_{\text{ext}}^2 g_{a \gamma \gamma}^2 L^2$: what is L?
- Axion and photon have same energy ω , but momentum mismatch $\delta k \sim m_a^2/\omega$
- $\delta k \ll L_{\text{CAST}}^{-1}$: $L \sim L_{\text{CAST}}$
- ► But if $\delta k \gg L_{CAST}^{-1}$, $L \sim \delta k^{-1} \ll L_{CAST}$ ©

(日) (日) (日) (日) (日) (日) (日)

High B field converts axions -> photons

- $P_{a \to \gamma} \sim B_{\text{ext}}^2 g_{a \gamma \gamma}^2 L^2$: what is L?
- Axion and photon have same energy ω , but momentum mismatch $\delta k \sim m_a^2/\omega$
- $\delta k \ll L_{\text{CAST}}^{-1}$: $L \sim L_{\text{CAST}}$
- But if $\delta k \gg L_{CAST}^{-1}$, $L \sim \delta k^{-1} \ll L_{CAST}$
- ► The CAST fix: at high m_a , give photon a mass $m_{\gamma} \approx m_a$ with *e.g.* ³He so that $\delta k \sim 0$ and $L \sim L_{CAST}$ ©

Existing axion constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Existing axion constraints

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Projected axion sensitivity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Axion-photon conversion in neutron stars

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQの

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへの

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

▲□▶▲□▶▲□▶▲□▶ □ のへの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

NS with strong B-field and surrounding plasma

radio waves radio emission propagates to Earth

Narrow radio line detectable at Earth with $f = m_a/(2\pi)$.

DM axions resonantly convert to radio waves when $m_a = m_\gamma$

Sensitivity Calculation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 Assume rotation axis Ω̂ aligned with *B*-field axis ẑ for simplicity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► Dipole B-field:
$$B(r, \theta) = \frac{r_{NS}^3}{r^3} \frac{B_0}{2} (3\cos^2\theta + 1)^{1/2}$$

- Assume rotation axis Ω̂ aligned with *B*-field axis ẑ for simplicity
- ► Dipole B-field: $B(r, \theta) = \frac{r_{\text{NS}}^3}{r^3} \frac{B_0}{2} (3\cos^2\theta + 1)^{1/2}$

► Goldreich-Julian magnetosphere model: $n_c(r, \theta) = 2 \frac{\hat{\mathbf{\Omega}} \cdot \hat{\mathbf{B}}}{e}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Assume rotation axis Ω̂ aligned with *B*-field axis ẑ for simplicity
- ► Dipole B-field: $\underline{B}(r,\theta) = \frac{r_{\text{NS}}^3}{r^3} \frac{B_0}{2} (3\cos^2\theta + 1)^{1/2}$
- Goldreich-Julian magnetosphere model: $n_c(r, \theta) = 2 \frac{\hat{\Omega} \cdot \hat{B}}{c}$

・ロト・日本・日本・日本・日本

 \blacktriangleright Plasma mass: $\omega_{\rm pl} \sim \sqrt{\frac{n_c}{m_c}} \sim \frac{1}{r^{3/2}}$

- Assume rotation axis Ω̂ aligned with *B*-field axis ẑ for simplicity
- ► Dipole B-field: $\frac{B}{r}(r,\theta) = \frac{r_{\text{NS}}^3}{r^3} \frac{B_0}{2} (3\cos^2\theta + 1)^{1/2}$
- Goldreich-Julian magnetosphere model: $n_c(r, \theta) = 2 \frac{\hat{\Omega} \cdot \hat{B}}{c}$

・ロト・日本・日本・日本・日本

- ▶ Plasma mass: $\omega_{\rm pl} \sim \sqrt{\frac{n_c}{m_c}} \sim \frac{1}{r^{3/2}}$
- Close match to numerical NS simulations away from acceleration regions

900

► Power: $P \sim g_{a\gamma\gamma}^2 B_0^2 \quad \underbrace{\left(\frac{1}{r_c^4}\right)}_{\text{DM}} \times \rho_{\text{DM}}^\infty \times \quad \underbrace{\left(\frac{1}{v_0}\right)}_{\text{DM}}$ r_c : conv. rad. v_0 : DM vel. disp.

・ コット (雪) (小田) (コット 日)

• Larger m_a , smaller r_c and larger the power

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Bandwidth *B*: $B \sim m_a v_0^2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Background temperature

Galactic Center

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- High DM density ③
- Many neutron stars ©
- High background temperature ③

Galactic Center

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- High DM density ③
- Many neutron stars ③
- High background temperature ③

Galactic Center

- Beam area shrinks with increasing frequency
- High frequency less NSs have resonant conversion
- Can be useful to search for bright individual NSs

- Globular Cluster within Sagittarius dwarf ($\sim 10^3$ NSs)
- Low background, high DM density, low velocity dispersion, 20 kpc away
- $\delta f/f \sim 10^{-8}$ for individual NSs (or 10^{-4} for all sources)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 24 hrs observation
- 5σ detection threshold

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 24 hrs observation
- 5σ detection threshold

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 24 hrs observation
- 5σ detection threshold

 Caution: current NS model not optimized for active pulsars (underestimate flux at high frequencies)

 Radio observations of neutron stars promising avenue to detect axion DM

- Radio observations of neutron stars promising avenue to detect axion DM
- Proposal in for GBT time to observe Galactic Center, M54, M31, and nearby isolated neutron stars

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Radio observations of neutron stars promising avenue to detect axion DM
- Proposal in for GBT time to observe Galactic Center, M54, M31, and nearby isolated neutron stars

(ロ) (同) (三) (三) (三) (三) (○) (○)

 Ongoing data analysis with Effelsberg Telescope of magnetar J1745-2900 near the Galactic Center (R. Eatough, J. Foster, B.S., C. Weniger)

- Radio observations of neutron stars promising avenue to detect axion DM
- Proposal in for GBT time to observe Galactic Center, M54, M31, and nearby isolated neutron stars
- Ongoing data analysis with Effelsberg Telescope of magnetar J1745-2900 near the Galactic Center (R. Eatough, J. Foster, B.S., C. Weniger)
- To do (theory):
 - Closer look at active pulsars (charge acceleration region, population study, etc.)
 - More through analysis of possible extragalactic targets
 - Better joint likelihood combining NSs (in progress with C. Weniger)
 - Account for DM substructure (in progress with J. Foster and K. Zurek)

Questions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 24 hrs observation
- 5σ detection threshold

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 24 hrs observation
- 5σ detection threshold

- 24 hrs observation
- 5σ detection threshold

・ コット (雪) (小田) (コット 日)

- 24 hrs observation
- 5σ detection threshold

 Caution: current NS model not optimized for active pulsars (underestimate flux at high frequencies)