# New Physics and 21 cm Observations

#### **Josef Pradler**

with Pospelov, Ruderman, Urbano, PRL 2018, arXiv:1803.07048



HEPHY INSTITUTE OF HIGH ENERGY PHYSICS

Invisibles Workshop KIT Sept 06 2018

### Plan

- Introduction on the stability of Dark Matter
- DM decay can introduce dark radiation (DR) content
- Cosmological 21cm signal and (anomalous) EDGES observation and the at redshift z=17-20
- Prospects of explaining anomaly in terms of new physics concrete successful model is offered
- Outlook / Conclusions

# DM decay into visible states

Indirect detection searches require the lifetime of **WIMP-DM** to exceed the age of universe by a large factor,  $(10^9 - 10^{11}) t_0$ , through visible decay products

gamma-rays

neutrinos



Cohen et al PRL 2016

El Aisati, Gustafsson, Hambye PRD 2015

# DM decay into visible states

Since recently, 21cm cosmology (tentatively) requires the lifetime of **sub-GeV DM** to exceed the age of universe by a large factor,  $(10^9 - 10^{11}) t_0$ 



Liu, Slatyer 2018 see also Clark et al 2018; Mitridate, Podo 2018

# DM decay into dark states?

Any **direct** sensitivity through a smaller branching fraction into SM states will strongly depend on the details of the model

Consider, e.g. DM decay  $X \to \chi \bar{\chi}$ 

$$\Rightarrow X \rightarrow \chi \bar{\chi} e^+ e^-$$
 decay is highly suppressed

$$\operatorname{Br}_{X \to \chi \bar{\chi} e^+ e^-} \le 10^{-3} G_{\chi}^2 m_X^4 \sim 10^{-13} \quad (m_X = 1 \, \text{GeV}, \, G_{\chi} = G_F)$$

Our Universe has the chance to be permeated by **dark radiation** that is sourced by DM decay (or annihilation). What are the direct tests for it?

# DM decay into dark states?

Cosmology remains a sensitive probe of DM decays, irrespective of DM mass and interaction, but through gravity.

CMB (late-time ISW) and lensing constrains

 $f_{\rm dm} < \text{few} \% \qquad (\tau_{\rm dm} < \tau_U)$  $f_{\rm dm} / \tau_{\rm dm} \lesssim 1/12\tau_U \qquad (\tau_{\rm dm} > \tau_U)$ 

Poulin, Serpico, Lesgourges 2016 see also Berezhiani, Dolgov, Tkachev 2015



There are also constraints on structure formation with residual "kicked DM state" in place

e.g. Wang, Peter at al. 2014



**CMB-inferred** 

 $\rho_{\rm DR}/\rho_{\gamma} < 0.15$  Planck



**CMB-inferred** 

Low redshift Universe

 $\rho_{\rm DR}/\rho_{\gamma} < 0.15$  Planck



# Late DR in SM neutrinos



**Option 1** 

DR in SM neutrinos  $\nu$ 

=> if flux is saturated then neutrino floor ~2 orders of magnitude away from current direct detection sensitivity

=> neutrino floor is raised to by ~2 orders of magnitude for a 30 GeV WIMP

[Nikolic, JP in prep]

Cui, Pospelov, JP 2017

### Late DR in a new species

![](_page_10_Figure_1.jpeg)

Option 2

new neutrino interacting with baryonic current

Borexino limit derived from elastic scattering on protons

Cui, Pospelov, JP 2017

![](_page_11_Figure_1.jpeg)

### Universe in "numbers"

![](_page_12_Figure_1.jpeg)

**Dark Radiation can be dominant** 

NB: any DE number density was subtracted...

# Signatures of very soft DR?

Light fields often have their interactions enhanced at high energies and suppressed at low energies, e.g.

- Neutrinos that have Fermi-type interactions with atomic constituents
- Axions with effective dimension 5 interactions with fermions and gauge bosons.
- => This type of dark radiation (DR) very difficult to see directly

However, **21cm cosmology** could provide new insights.

# EDGES result

What is measured in 21 cm cosmology is a brightness temperature

![](_page_14_Figure_2.jpeg)

0.2

#### Zaldarriaga, Furlanetto, Hernquist 2004

=> EDGES collaboration has measured anomalously low value (3.8 sigma)

 $T_{21}(z \simeq 17) = -0.5K \quad (16 < z < 20)$ 

Bowman et al 2018

Age of the Universe (Myr)

150

200

250

300

# H hyperfine transition

![](_page_15_Figure_1.jpeg)

In reality, evolution is very complex, once  $Ly_{\alpha} \& X$ -ray photons become available!

see Venumadhav, Dai, Kaurov, Zaldarriaga 2018

### Evolution of spin temperature

see, e.g., Loeb, Pritchard 2012

![](_page_16_Figure_2.jpeg)

### Evolution of spin temperature

see, e.g., Loeb, Pritchard 2012

![](_page_17_Figure_2.jpeg)

# Principal options in changing T<sub>21</sub>

$$T_{21}(z) \simeq 23 \,\mathrm{mK} \, x_H(z) \left[ 1 - \frac{T_r(z)}{T_s(z)} \right] \sqrt{\frac{1+z}{10}}$$

#### 1. Make baryons colder by coupling it to colder DM fluid

DM-baryon/electron cross section needs to be enhanced by 1/v^4 (i.e. massless mediator, Coulomb-like.) Milli-charged DM constraints apply; sub-% population may still do it.

![](_page_18_Figure_4.jpeg)

Barkana; Munoz, Loeb; Barkana et al; Berlin et al; ...

# Principal options in changing $T_{21}$

$$T_{21}(z) \simeq 23 \,\mathrm{mK} \, x_H(z) \left[ 1 - \frac{T_r(z)}{T_s(z)} \right] \sqrt{\frac{1+z}{10}}$$

Colin, Baxter; Falkowski, Petraki;

#### 2. Change the timing of baryon-photon decoupling

=> Baryons have more time to cool (e.g. via early dark energy domination or charge sequestration, i.e.,  $n_e < n_p + 2 n_\alpha$ )

![](_page_19_Figure_5.jpeg)

 $10^{1}$ 

z

# Principal options in changing T<sub>21</sub>

$$T_{21}(z) \simeq 23 \,\mathrm{mK} \, x_H(z) \left[ 1 - \frac{T_r(z)}{T_s(z)} \right] \sqrt{\frac{1+z}{10}}$$

#### 3. Add photons into the 21cm wavelength band at $z\sim17$

Feng, Holder; Tallin group; our paper; Moroi, Nakayama, Tang;

=> raises "effective  $T_{CMB}$ " in the low-energy **Rayleigh Jeans (RJ)** tail of the CMB

$$\frac{dn_{\rm CMB}}{d\omega} = \frac{\omega^2}{\pi^2} \frac{1}{e^{\omega/T} - 1} \to \frac{T\omega}{\pi^2} \qquad \Rightarrow \qquad T \sim \frac{1}{\omega} \frac{dn_{\rm CMB}}{d\omega}$$

=> those extra photons engage in the H hyperfine transition

=> needs a careful modification of the CMB, that is only operative in the IR (disfavors direct DM decay into photons)

**Rough criterion:** double the amount of RJ photons at  $x \equiv \omega_{21}/T_{\rm CMB} = 10^{-3}$ 

# Principal options in changing T<sub>21</sub>

$$T_{21}(z) \simeq 23 \,\mathrm{mK} \, x_H(z) \left[ 1 - \frac{T_r(z)}{T_s(z)} \right] \sqrt{\frac{1+z}{10}}$$

3. Add photons into the 21cm wavelength band at z~17

$$x = \frac{\omega_{21}}{T_{\rm CMB}} \simeq 10^{-3}$$

CMB not measured at x ~ 10<sup>-3</sup> i.e below 100 MHz; swamped by foregrounds

=> room to accommodate primordial extra photons

=> will affect 21cm signal

![](_page_21_Figure_7.jpeg)

# How much DR is possible?

Number of CMB photons in the RJ tail until  $\omega_{\text{max}}$ 

$$n_{\rm RJ} = \frac{1}{\pi^2} \int_0^{\omega_{\rm max}} \frac{\omega^2 d\omega}{\exp[\omega/T] - 1} \simeq \frac{T\omega_{\rm max}^2}{2\pi^2} \simeq 0.21 \, x_{\rm max}^2 \, n_{\rm CMB}$$

For 
$$x_{\rm max} \sim 10^{-3}$$
  $\frac{n_{\rm RJ}}{n_{\rm CMB}} \sim 10^{-6}$   $x = \omega/T$ 

For example,  $x_{\text{max}} = 10^{-3}$ , and saturating the permissible numbers:

$$n_{\rm DR} \lesssim 10^2 n_{\rm CMB}$$
, early DR with  $\Delta N_{\rm eff} = 0.5$   
 $n_{\rm DR} \lesssim 10^5 n_{\rm CMB}$ , late decay of  $0.05 \rho_{\rm DM}$ 

=> it is possible to add many more dark quanta in the RJ tail without running into immediate problems with cosmology

**Neutrinos** 

**Dark Radiation** 

?

Dark

Matter

**Photons** 

### Modification of the RJ tail of the CMB

![](_page_23_Figure_1.jpeg)

### Modification of the RJ tail of the CMB

![](_page_24_Figure_1.jpeg)

### DM decay into dark photons

Axion-like particle together with dark photon:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{m_a^2}{2} a^2 + \frac{a}{4f_a} F'_{\mu\nu} \tilde{F}'^{\mu\nu} + \mathcal{L}_{AA'} ,$$
$$\mathcal{L}_{AA'} = -\frac{1}{4} F_{\mu\nu}^2 - \frac{1}{4} (F'_{\mu\nu})^2 - \frac{\epsilon}{2} F_{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2$$

Lifetime can be anything from much shorter to much longer than the age of the Universe

$$\Gamma_a = \frac{m_a^3}{64\pi f_a^2} = \frac{3 \times 10^{-4}}{\tau_{\rm U}} \left(\frac{m_a}{10^{-4}\,{\rm eV}}\right)^3 \left(\frac{100\,{\rm GeV}}{f_a}\right)^2$$

Axion decay to two normal photons does not work because  $f_a > 10^9 \text{ GeV}$ and the rate is tiny.

### Dark photon - photon conversion

$$m'_A = m_A(z)$$

![](_page_26_Figure_2.jpeg)

photon plasma freq.

$$m_A(z) \simeq 1.7 \times 10^{-14} \text{eV} \times (1+z)^{3/2} X_e^{1/2}(z)$$

transition probability  $P_{A \to A'} = P_{A' \to A} = \frac{\pi \epsilon^2 m_{A'}^2}{\omega} \times \left| \frac{d \log m_A^2}{dt} \right|_{t=t_{\rm res}}^{-1}$ 

see also [Mirizzi, Redondo, Sigl 2009]

### Spectra at 21cm wavelength

![](_page_27_Figure_1.jpeg)

### CMB today

![](_page_28_Figure_1.jpeg)

### Constraint on spectral CMB distortion

 $P_{A'\to A} \propto \frac{1}{\omega}$ 

biases conversion towards the IR

=> good - makes it safe(r) against strong COBE/FIRAS limit on spectral CMB distortion for x > 0.2

NB: axion-photon conversion  $\propto \omega$ 

![](_page_29_Figure_5.jpeg)

# Stellar energy loss constraint

Very light fields (< keV) are most notably constrained through astrophysics. Constraints can be divided into ones that vanish as  $m_{A'} \rightarrow 0$  and those that don't. For example, direct A' production is suppressed by  $(m'_A/m_A)^2$ .

Photons (plasmons) can decay to dark photon and axion  $A^* \to A'a$ 

![](_page_30_Picture_3.jpeg)

$$Q_{A^* \to A'a} = \frac{\epsilon^2 m_A^4 n_T}{96\pi f_a^2}$$

=> compare with neutrino emission from a dipole moment

$$Q_{A^* \to \nu\bar{\nu}} = \frac{\mu^2 m_A^4 n_T}{24\pi}$$

=> HB limit  $\mu \leq 3 \times 10^{-12} (e/2m_e)$  [Raffelt, Haft 93]

 $m_A =$  plasma freq.

 $\epsilon/f_a < 2 \times 10^{-9} \,\mathrm{GeV}^{-1}$ 

# DM lifetime vs. photon count

Example:

Fixing progenitor mass

 $m_a = 10^{-3} \,\mathrm{eV}$ 

and DP mass such that

 $z_{res} = 500$ 

we obtain the possible enhancement in the photon count at  $x = 10^{-3}$ 

green line: count doubled
=> EDGES amplitude explained

![](_page_31_Figure_8.jpeg)

## Kinetic Mixing vs. DP mass

Imposing  $n_{A' \to A}/n_{RJ} = 1$ , i.e. requiring that EDGES amplitude is explained, and for one value of axion mass

=> yields parameter space in DP mass vs. epsilon

=> much allowed.

![](_page_32_Figure_4.jpeg)

# Outlook

- Further constraints on the model will exist from conversions in the low-z Universe, e.g.
  - from thermal SZ-effect measurements in specific Clusters
  - from "lines" from axion decay inside clusters today

![](_page_33_Figure_4.jpeg)

- Interesting connection to ARCADE 2 radio observations. Measurement of (extragalactic) sky temperature in the range 3-8GHz show excess [compare FIRAS > 13 GHz]
- Can we learn more about EDGES, e.g. by considering the shape? (steep turn-on of the feature)

[in preparation]

# Conclusions

 Cosmic pie-chart in number densities is largely unwritten. Our Universe could be filled with dark radiation, and when the energy of quanta is small, it can be so in large numbers.

![](_page_34_Figure_2.jpeg)

• There is a class of models = dark photon sourcing particles, that supply an extra population of cosmological photons through resonant conversion.

=> can account for EDGES signal

• presented, concrete model has plenty of parameter space. Additional constraints from the low-z Universe will apply (currently under investigation)

Independently of whether EDGES result will persist, 21 cm cosmology offers a new tool for testing the physics of the dark sector.