Singlet-Triplet Fermionic Dark Matter and LHC Phenomenology

Sarif Khan

Harish-Chandra Research Institute, Allahabad, India

Talk at: Invisible 18 Workshop

Based on: 1711.08888 (Eur.Phys.J. C78 (2018) no.4, 302)

Collaborators: Sandhya Choubey, Manimala Mitra and Subhadeep Mondal

Sarif Khan DM and LHC Pheno (ロ) (四) (三) (三)

Strategy in DM Study

Will focus on the following points,

- * Satisfying Relic Density bound (FeynRules \rightarrow MicrOMEGAs).
- * DM direct detection.
- * DM indirect detection.

< ロ > < 同 > < 三 > < 三

Standard Model Particles

HRI

DM and LHC Pheno

Sarif Khan

- Need to extend the SM.
- 秦 Introduce a triplet fermion,

Gauge	Baryon Fields			Lepton Fie	Scalar Fields		
Group	$Q_L^i = (u_L^i, d_L^i)^T$	u_R^i	d_R^i	$L_L^i = (\nu_L^i, e_L^i)^T$	e_R^i	ρ	ϕ_h
$SU(3)_c$	3	3	3	1	1	1	1
$SU(2)_L$	2	1	1	2	1	3	2
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	0	1/2
\mathbb{Z}_2	+	+	+	+	+	_	+

where

$$\rho = \begin{pmatrix} \frac{\rho_0}{2} & \frac{\rho^+}{\sqrt{2}} \\ \frac{\rho^-}{\sqrt{2}} & -\frac{\rho_0}{2} \end{pmatrix} . \tag{1}$$

HRI

Sarif Khan

DM and LHC Pheno

Relic Density

- ♠ Relic density satisfies around 2.3 TeV.
- ♠ This simplest model has few drawbacks which are as follows.

Sarif Khan DM and LHC Pheno

Drawbacks

J. Hisano et. al. [PRD 05]

Sommerfeld enhancement after 1 TeV mass.

2

- [†] This DM is ruled out by the HESS and Fermi-LAT data.
- $\vartheta~\sim$ 2 TeV DM is difficult to detect at LHC.
- [†] No tree level DD processes exist.

3

・ロト ・回ト ・ヨト ・ヨト

Way Out

- One way out : Introduce a Singlet fermion and a triplet scalar.
- Somplete particles list are as follows,

Gauge	Baryon Fields			Lepton Fields				Scalar Fields	
Group	$Q_L^i = (u_L^i, d_L^i)^T$	u_R^i	d_R^i	$L^i_L = (\nu^i_L, e^i_L)^T$	e_R^i	N'	ρ	ϕ_h	Δ
$SU(3)_c$	3	3	3	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	1	3	2	3
$U(1)_Y$	1/6	2/3	-1/3	-1/2	-1	0	0	1/2	0
\mathbb{Z}_2	+	+	+	+	+	-	_	+	+

8 All the above drawbacks are solved.

э

<ロ> <同> <同> < 回> < 回>

Lagrangian

Present model Lagrangian,

$$\mathcal{L} = \mathcal{L}_{SM} + \operatorname{Tr}\left[\bar{\rho}\,i\,\gamma^{\mu}D_{\mu}\rho\right] + \bar{N'}\,i\,\gamma^{\mu}D_{\mu}N' + \operatorname{Tr}\left[\left(D_{\mu}\Delta\right)^{\dagger}\left(D^{\mu}\Delta\right)\right] - V(\phi_{h},\Delta) - Y_{\rho\Delta}\left(\operatorname{Tr}\left[\bar{\rho}\,\Delta\right]N' + h.c.\right) - M_{\rho}\operatorname{Tr}\left[\bar{\rho^{c}}\rho\right] - M_{N'}\,\bar{N'^{c}}N'$$
(2)

where triplet fermion,

$$\rho = \begin{pmatrix} \frac{\rho_0}{2} & \frac{\rho^+}{\sqrt{2}} \\ \frac{\rho^-}{\sqrt{2}} & -\frac{\rho_0}{2} \end{pmatrix} .$$
(3)

Potential $V(\phi_h, \Omega)$ is,

$$V(\phi_h, \Delta) = -\mu_h^2 \phi_h^{\dagger} \phi_h + \frac{\lambda_h}{4} (\phi_h^{\dagger} \phi_h)^2 + \mu_{\Delta}^2 \operatorname{Tr}[\Delta^{\dagger} \Delta] + \lambda_{\Delta} (\Delta^{\dagger} \Delta)^2 + \lambda_1 (\phi_h^{\dagger} \phi_h) \operatorname{Tr}[\Delta^{\dagger} \Delta]$$
$$+ \lambda_2 \left(\operatorname{Tr}[\Delta^{\dagger} \Delta] \right)^2 + \lambda_3 \operatorname{Tr}[(\Delta^{\dagger} \Delta)^2] + \lambda_4 \phi_h^{\dagger} \Delta \Delta^{\dagger} \phi_h + (\mu \phi_h^{\dagger} \Delta \phi_h + h.c.) .$$
(4)

Sarif Khan

Mass Eigenstates

 ϕ_h will take vev spontaneously, and simultaneously the triplet scalar Δ will get induced vev,

 $\mu_h^2>0, \quad \mu_\Delta^2>0, \quad \lambda_h>0 \quad \text{and} \quad \lambda_\Delta>0\,.$

- After symmetry breaking, there will be mixing between the two neutral scalars, two charged scalars, and two neutral fermions.
- Therefore, we need to introduce mass basis in the following way, Neutral Higgs:

$$h_1 = \cos \alpha H + \sin \alpha \Delta_0$$

$$h_2 = -\sin \alpha H + \cos \alpha \Delta_0$$

Charged Higgs:

$$G^{\pm} = \cos \delta \phi^{\pm} + \sin \delta \Delta^{\pm}$$

$$H^{\pm} = -\sin \delta \phi^{\pm} + \cos \delta \Delta^{\pm}$$
(5)

Fermions:

$$\rho_2^0 = \cos\beta \,\rho_0 + \sin\beta \,N^{\prime c}$$

$$\rho_1^0 = -\sin\beta \,\rho_0 + \cos\beta \,N^{\prime c}$$
(6)

・ロト ・四ト ・ヨト ・ヨト

3

HRI

Constraints Used in DM Study

SI direct detection cross section

DD cross section for the above diagrams,

$$\sigma_{SI} = \frac{\mu_{red}^2}{\pi} \left[\frac{M_N f_N}{v} \frac{\Delta M_{21} \sin^2 2\beta \sin 2\alpha}{4v_\Delta} \left(\frac{1}{M_{h_2}^2} - \frac{1}{M_{h_1}^2} \right) \right]^2$$

Sarif Khan DM and LHC Pheno <ロ> <同> <同> <同> < 同>

DM Results

Figure: Feynman diagrams which take part in DM phenomenology

2

< ロ > < 回 > < 回 > < 回 > < 回 >

DM Results

Figure: BSM Higgs mass, $M_{h_2} = 300$ GeV, $\sin \delta = \sin \alpha = 0.03$ and $\Delta M_{12} = 50$ GeV.

2

<ロ> <同> <同> < 回> < 回>

DM Results

Figure: $M_{\rho_1^0}$, M_{h_2} and sin β three parameters have been varied for scatter plots.

Sarif Khan

Indirect Detection

Figure: Feynman diagrams contributing in $\gamma\gamma$ final state.

・ロン ・回 と ・ ヨ と ・

글 🕨 🛛 글

Indirect Detection

CS times velocity is, [L. Bergstrom et. al., NPB 97; Z. Bern et. al, PLB 97]

$$\langle \sigma v \rangle_{\gamma\gamma} = \frac{\alpha_{EM}^2 M_{\rho_1}^2}{16\pi^3} |A_{W\rho} + A_{H\rho}|^2 \,. \tag{7}$$

Sarif Khan DM and LHC Pheno

Collider Part

Signal Production :

$$\begin{array}{rcl} p \ p & \rightarrow & X \ Y \\ p \ p & \rightarrow & X \ Y \ j \\ p \ p & \rightarrow & X \ Y \ j \ j \end{array}$$

Signal-I:

$$\{X Y\} = \{\rho_2^0 \ \rho^+\}, \ \{\rho_2^0 \ \rho^-\}$$

Signal-II:

$$\{\mathsf{X}\;\mathsf{Y}\}=\{\rho^+\;\rho^-\}$$

Showering by Pythia \rightarrow looked for the signal,

Sarif Khan DM and LHC Pheno 2

Collider Part

Figure: Production cross section

Sarif Khan

DM and LHC Pheno

2

3

Collider Part

Bencmark points:

Parameters	$M_{ ho_1^0} \; [\text{GeV}]$	$M_{ ho_2^0}$ [GeV]	M_{ρ^+} [GeV]	M_{h_2} [GeV]	$M_{H^{\pm}}~[{\rm GeV}]$	σ_{SI} [pb]	Ωh^2
BP1	87.6	128.0	128.2	195.5	195.5	$2.1 \ \times 10^{-12}$	0.1207
BP2	132.0	172.0	172.2	300.0	300.0	4.1×10^{-12}	0.1208
BP3	171.1	211.0	211.2	400.0	400.0	$4.8 \ \times 10^{-12}$	0.1197
BP4	86.7	200.0	200.2	194.1	194.1	1.8×10^{-11}	0.1186
BP5	119.0	230.0	230.2	280.0	280.0	$2.9\times\!10^{-11}$	0.1195

Statistical Significance (S)

We have used following formula in determining \mathcal{S} ,

$$S = \sqrt{2 \times \left[(s+b) \ln \left(1 + \frac{s}{b} \right) - s \right]}$$
(8)

${\mathcal S}$ for different BPs :

Signal at 13 TeV		Statitical Significance (\mathcal{S})	Required Luminosity \mathcal{L} (fb ⁻¹)		
BP	DM mass [GeV]	$\mathcal{L} = 100 \text{ fb}^{-1}$	$S = 3\sigma$		
BP1	87.6	3.5	74.4		
BP2	132.0	2.0	223.0		
BP3	171.1	1.3	545.3		
BP4	86.7	1.8	282.3		
BP5	119.0	1.4	473.9		

HRI

Conclusion

- Sy introducing singlet fermion, we have overcome the drawbacks of pure triplet fermions.
- The lighest among the two neutral fermions becomes a viable DM candidate.
- OM can be tested in different on going DD experiments like Xenon-1T, LUX.
- Fermi-LAT and HESS can detect the DM indirectly by detecting gamma-rays signal in future.
- So This model can also be tested at collider by searching multi-jet $+ \not{E_T}$ signal.

イロト イポト イヨト イヨト

DM and LHC Pheno

Back UP Slides

(日) (四) (三) (三) (三) (0)

Sarif Khan DM and LHC Pheno HRI

Selection Cuts

Basic Cuts (A0) :

- Leptons are selected with p^l_T > 10 GeV and the pseudorapidity |η^ℓ| < 2.5, where ℓ = e, μ.</p>
- We used p^γ_T > 10 GeV and psudorapidity |η^γ| < 2.5 as the basic cuts for photon.</p>
- ▶ We have chosen the jets which satisfy $p_T^j > 40$ GeV and $|\eta^j| < 2.5$.
- We have considered the azimuthal separation between all reconstructed jets and missing energy must be greater than 0.2 i.e. Δφ(jet, Ĕ_T) > 0.2.

イロト イポト イヨト イヨト

Selection Cuts

- A1: We have imposed a lepton and photon veto in the final state.
- A2: p_T requirements on the hardest and second hardest jets: $p_T^{j_1} > 130 \text{ GeV}$ and $p_T^{j_2} > 80 \text{ GeV}$.
- A3: In order to minimise QCD multi-jet, we have ensured that the $\vec{\not{E}}_T$ and the jets are well separated, i.e., $\Delta \phi(j_i, \vec{\not{E}}_T) > 0.4$ where i = 1, 2. For all the other jets, $\Delta \phi(j, \vec{\not{E}}_T) > 0.2$.
- A4: We demand a hard cut on the effective mass variable, $M_{Eff} > 800$ GeV, where $M_{Eff} = \sum_{i} |\vec{p}_{T_i}^{j}| + \sum_{i} |\vec{p}_{T_i}^{\ell}| + \not{E}_{T}$.
- A5: We put the bound on the missing enrgy $\not E_T > 160$ GeV.

(日) (同) (三) (

Cut-flow table for BKG

BKG Contribution after applying cuts :

SM Backgrou	Effective Cross section after applying cuts (pb)							
Channels	Cross-section (pb)	A0 + A1	A2	A3	A4	A5		
$Z + \leq 4$ jets	5.7×10^{4}	5.5×10^3	361.90	241.60	11.40	2.20		
$W^{\pm} + \leq 4 \text{ jets}$	1.9×10^{5}	9.1×10^3	783.20	504.00	18.90	1.50		
QCD (≤ 4 jets)	2.0×10^{8}	1.5×10^7	3.5×10^5	2.4×10^5	2.5×10^3	-		
$t \bar{t} + \leq 2 \text{ jets}$	722.94	493.73	171.46	120.63	13.89	1.94		
$W^{\pm}Z + \leq 2$ jets	51.10	19.66	5.37	3.59	0.50	0.12		
$ZZ + \leq 2$ jets	13.71	4.99	0.80	0.53	0.06	0.02		
Total Backgrounds						5.78		

Cut-flow table for Signal-I

Signal-I Contribution after applying cuts :

Signal at 13 TeV		Effective Cross section after applying cuts (fb)					
BP	Cross-section (pb)	A0 + A1	A2	A3	A4	A5	
BP1	6.757	1005.05	175.08	138.45	22.02	19.15	
BP2	2.279	385.22	69.16	56.51	11.87	10.85	
BP3	1.052	189.71	34.63	29.19	7.36	6.82	
BP4	1.296	1047.86	145.67	116.94	14.19	9.82	
BP5	0.760	616.00	89.60	72.63	9.80	7.40	

Cut-flow table for Signal-II

Signal-II Contribution after applying cuts :

Signal at 13 TeV		Effective Cross section after applying cuts (fb)						
BP	Cross-section (pb)	A0 + A1	A2	A3	A4	A5		
BP1	3.419	2639.30	74.36	59.18	8.54	7.31		
BP2	1.156	880.60	28.77	23.87	4.95	4.43		
BP3	0.532	402.24	14.80	12.62	3.18	2.95		
BP4	0.652	446.80	63.99	45.54	5.72	3.76		
BP5	0.380	258.55	34.40	28.07	3.99	3.08		