keV scale sterile neutrino Dark Matter

Fedor Bezrukov

The University of Manchester

Invisibles18 Workshop 3-7 September 2018 Karlsruhe Institute of Technology (KIT)

The University of Manchester

- [X-ray observations](#page-4-0)
- Pure ν[MSM just three sterile neutrinos](#page-12-0)
- [Other DM generation mechanisms](#page-29-0)
- [Laboratory searches](#page-38-0)

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) Standard Model – describes nearly everything

Describes

- all laboratory experiments – electromagnetism, nuclear processes, etc.
- all processes in the evolution of the Universe after the Big Bang Nucleosynthesis $(T < 1$ MeV, $t > 1$ sec)

Experimental problems:

- **•** Laboratory
	- ? Neutrino oscillations
- Cosmology
	- ? Baryon asymmetry of the Universe
	- ? Dark Matter

Ga 95% ν ↔ν τ ^ν

 10^{-4} 10^{-2} 10^{9} 10^{-2} tan2θ

http://hitoshi.berkeley.edu/neutrino

↔ν

 \mathcal{D}

All limits are at 90%CL. unless otherwise noted

CHOOZ Bugey CHORUS NOMAD

τ NOMAD

NOW CONSULTS

SuperK 90-99%

LSND 90/99% MiniBooNE

> Kama **Kama** 95% all solar 95% and 195% and 195%

 \sim \pm MINOS

 $10₀$ 10^{-3} $\frac{2}{3}$ 2]

KARMEN2

NOMAD

 10^{-12} 10^{-9} – 10^{-6}

- ? Inflation
-
- Dark Energy

- Nearly always present in SM extensions
- Feebly interacting
- Quite stable if light (keV scale)

2 [X-ray observations](#page-4-0)

- Pure v [MSM just three sterile neutrinos](#page-12-0)
- [Other DM generation mechanisms](#page-29-0)
- [Laboratory searches](#page-38-0)

Leads to constraints from the X-ray observations

Main decay channel

 $N_1 \longrightarrow V$ θ_1 \leq \bar{v} ν

\n- $$
\tau > \tau_{\text{Universe}} - \text{easy:}
$$
\n- $\theta^2 < 3.3 \times 10^{-4} \left(\frac{10 \text{keV}}{M_1} \right)^5$
\n- not visible, really…
\n

Second decay channel: *N*₁ → νγ

$$
\Gamma \simeq 5.5 \times 10^{-27} \left(\tfrac{\theta_1^2}{10^{-5}}\right) \left(\tfrac{M_1}{1\text{keV}}\right)^5 s^{-1}
$$

- Monochromatic: $E_{\gamma} = M_1/2$
- We should see an X-ray (∼ keV) line following the DM distribution in the sky

Bounds for the N_1 – DM sterile neutrino

Universal constraint for all DM models

[\[Boyarsky, Ruchayskiy, Shaposhnikov'09\]](#page-49-0)

- Look at the compact object with DM (dwarf spheroidals)
	- Check that sterile neutrinos can "fit" there Pauli blocking

 $M_{DEG} > 0.5 keV$

• Stricter bound – phase space density arguments

M > 1−2 keV

Tremaine, Gunn 79; Gorbunov, Khmelnitsky, Rubakov 08; Boyarsky,

Ruchayskiy, Iakubovskyi 08

- Light sterile neutrino being relativistic after generation (warm) provides cut off in the structure formation at smaller (sub-Mpc) scales.
- Presence of this cut off can be searched by the analysis of the Lyman- α absorption line of the intergallactic hydrogen.
	- The bound depends on *velocities* of the neutrinos, not on masses – bound depends on distribution function – production mechanism

Boyarsky, Lesgourgues, Ruchayskiy, Viel'08; Viel, Becker, Bolton, Haehnelt'13; Baur et.al.17

Universal constraints for all models

[Outline](#page-1-0) [Introduction](#page-2-0) **[X-ray observations](#page-4-0)** *ν*[MSM](#page-12-0) [Beyond](#page-29-0) *vMSM* [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) $Introduction$ X -ray observations v MSM + M31 [O](#page-6-0)[N-](#page-7-0)[C](#page-8-0)[E](#page-9-0)[NT](#page-10-0)[E](#page-11-0)R [4](#page-33-0).[6](#page-34-0)+1.⁴

− Revond vMSM Labors Beyond vMSM Laboratory searches

× (1)

Search for the line in X[-](#page-5-0)rays T combined observations used in this paper. Second column denotes the sum of T

Unidentified line at 3.5 keV in X-rays

- FIG. 1: *Left:* Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the top plot around 3.5 keV is *not added*, hence the group of positive residuals. **Rightan 3.5 keV is** *not* **added**, hence the group of positive residuals. **Rightan 3.5 keV is** *not* and *Rightan 3.5 kg*
	- the line has proper redshift for different sources
- the intensity is consistent the Dark Matter profiles scribed in [16]). This analysis did not reveal any line-like
- \bullet the line is absent in the blanc sky observations

Fulbul, Markevitch, Foster, Smith et.al.'14, Boyarsky, Ruchayskiy, Iakubovskyi, Franse'14

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0)

Sterile neutrino *N*¹ parameters would be

[Outline](#page-1-0) [Introduction](#page-2-0) **[X-ray observations](#page-4-0)** *ν*[MSM](#page-12-0) [Beyond](#page-29-0) *vMSM* [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) Current status of 3.5 keV line and future

Seen in

- **•** Perseus, Coma, and Ophiuchus galaxy clusters
- **Galaxy center**
- Stacked clusters
- M31 (Adromeda galaxy)

Not seen in

- Coma, Virgo and Ophiuchus clusters
- **Galaxy center**
- **•** Stacked galaxies
- **•** Dwarf spheroidals
- **•** Bullet cluster

Future

High resolution X-ray missions

- XARM
- o IYNX
- [Athena+](http://www.the-athena-x-ray-observatory.eu/) (2030?)

- [SM, Cosmology and sterile neutrinos](#page-2-0)
- [X-ray observations](#page-4-0)
- ³ Pure ν[MSM just three sterile neutrinos](#page-12-0)
- [Other DM generation mechanisms](#page-29-0)
- [Laboratory searches](#page-38-0)

Dark Matter

stay like DM Decay constraints – small enough radiative decay width (X-ray observations)

always there

behave like DM Structure formation constraints

• Heavy enough to form existing structures out of fermions

always there

• Cold enough to leave observed small scale structure intact

depends on generation mechanism

(spectrum)

appear like DM Production of proper DM abundance *depends on generation mechanism*

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) Minimal Scenario – νMSM

Just three sterile neutrinos

Model action $\mathcal{L}_{\text{vMSM}} = \mathcal{L}_{\text{SM}} + i\overline{\text{N}}\tilde{\phi}\text{N} - \overline{\text{L}}_L\text{FN}\tilde{\phi} - \overline{\text{N}}\text{F}^\dagger\text{L}_L\tilde{\phi}^\dagger$ − 1 $\frac{1}{2}(\overline{N^c}M_MN+\overline{N}M_M^\dagger N^c).$

[\[Asaka, Shaposhnikov'05,](#page-49-1) [Asaka, Blanchet, Shaposhnikov'05\]](#page-49-2)

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) νMSM description – neutrino masses

- *M*¹ ∼ 1–50 keV Dark Matter
- *M*2,³ ∼ several GeV Leptogenesys

 $M_I \gg M^D = F \langle \Phi \rangle$ – "see-saw" formula is working:

Light neutrino masses 7 1 *MI M^D*

Active-sterile mixings α*I*

$$
\theta_{\alpha l} = \frac{(M^D)_{\alpha l}^{\dagger}}{M_l} \ll 1
$$

Active neutrino masses

• X-rays require very small N_1 mixing angle θ_1 , so *m*¹ < 10−5eV

in the normal (NS, with mmin \mathcal{M} and inverted (IS, with mass spectral mass s before and after the Daya Bay 14 in Eq. (13). The Daya Bay 14 in Eq. (13). The current upper bound on Eq. (13).

- Because of small mixing angle (X-ray constraints!) *never* enters thermal equilibrium
	- Good does not overclose the Universe
	- Bad (or good?) abundance depends on initial conditions or new physics

Nowadays called

Freeze In dark Matter Particle Feebly Interacting Massive Particle

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) DM generation in the early Universe Produced in $l\bar{l} \rightarrow vN_1$, $q\bar{q} \rightarrow vN_1$, etc.

Production is proportionol to the effective active-sterile mixing angle

$$
\theta_M^2(T) \simeq \frac{\theta_1^2}{\left(1 + \frac{2p}{M_1^2} (b(p, T) \pm c(T))\right)^2 + \theta_1^2}.
$$

$$
b(p, T) = \frac{16G_F^2}{\pi \alpha_W} p(2 + \cos^2 \theta_W) \frac{7\pi^2 T^4}{360}
$$

$$
c(T) = 3\sqrt{2}G_F \left(1 + \sin^2 \theta_W\right) (n_{v_e} - n_{\bar{v}_e})
$$

 $(\theta_1$ – vacuum mixing angle of N_1 and active *v*)

Production can be

Non-resonant (*b* dominates) or Resonant (*c* ∼ *b*)

- N_1 never enter thermal equilibrium
- Momentum distribution is not thermal $f_{\mathcal{N}_1}(\rho) = \frac{\chi}{\mathrm{e}^{\rho/\mathcal{T}_\mathrm{v}}+1}$

with $\chi \propto \theta_1^2$ This is much hotter, than the "Thermal Relic" with $f_{\mathcal{T}R}(\rho) = \frac{1}{\mathrm{e}^{\rho/\mathcal{T}_{\mathcal{T}R}}+1}$ of low temperature *TTR* < *T*^ν The Lyman- α constraint is quite strong $m_{NRP,min}$ ∝ $(m_{TR,min})^{4/3}$

Nearly universal constraints

- N_1 never enter thermal equilibrium
- Momentum distribution is not thermal

$$
f_{N_1}(\rho)=\frac{\chi}{e^{\rho/T_v}+1}
$$

with $\chi \propto \theta_1^2$

This is much hotter, than the "Thermal Relic" with

$$
f_{TR}(p) = \frac{1}{e^{p/T_{TR}} + 1}
$$

of low temperature $T_{TR} < T_v$
• The Lyman- α constraint is quite strong
 $m_{NRP,min} \propto (m_{TR,min})^{4/3}$

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) Bounds for the N_1 – DM sterile neutrino

Nonresonant production is completely excluded

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) Resonant production – can provide much colder DM

And much more of it

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0)

Bounds for the N_1 – DM sterile neutrino

Only for "pure νMSM" – production with lepton asymmetries

[\[Canetti, Drewes, Shaposhnikov'13\]](#page-49-4)

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0)

Bounds for the N_1 – DM sterile neutrino

Only for "pure νMSM" – production with lepton asymmetries

[\[Canetti, Drewes, Shaposhnikov'13\]](#page-49-4)

CP violation present in Yukawa matrices *F*

non-equilibrium process are for sterile neutrino *N^I*

- production
- **o** freeze-out
- decay

Note – for $M_I/T \ll 1$ the asymmetries can be generated in active and sterile sectors with opposite signs

[\[Asaka, Blanchet, Shaposhnikov'05,](#page-49-2) [Canetti, Drewes, Shaposhnikov'13\]](#page-49-4)

- [SM, Cosmology and sterile neutrinos](#page-2-0)
- [X-ray observations](#page-4-0)
- Pure v [MSM just three sterile neutrinos](#page-12-0)
- 4 [Other DM generation mechanisms](#page-29-0)
- [Laboratory searches](#page-38-0)

- Warning 1 Can easily add/change DM production!
	- Can be nice
- Warning 2 Can easily spoil/change everything!
	- Can be also nice, but be careful (c.f. talk by Andrea Caputo on Monday)

- v MSM $N_{2,3}$ leptogenesys
- Scalar
	- is an inflaton, decays in equilibrium $X \rightarrow NN$ after reheating [\[Shaposhnikov, Tkachev'06,](#page-49-5) [FB, Gorbunov'10\]](#page-49-6)
	- Some scalar decaying in or out of equilibrium [Kusenko, Petraki'07]
	- Decaying scalar which may be FIMP itself [Merle, Totzauer'15]
	- New: Coherently oscillating ultralight scalar [FB, Chudaykin, Gorbunov, soon]

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) DM production happens in heavy particle decays

Scalar heavier than DM neutrino $M_X > 2M_1$

• Distribution is non-thermal with

$$
\langle p \rangle / T_{\gamma} = 2.45 \left(\frac{1}{S} \frac{3.9}{g_*(T_{\text{prod}})} \right)^{1/3}
$$

(for in equilibrium decay at T_{prod}) Colder, than non-resonant with $\langle p \rangle / T_{\gamma}$ = 3.15(4/11)^{1/3}

• Production abundance is controlles by scalar properties (width, mass, branching) – does not depend on θ

DM neutrino mass bound from Lyman- α $M_1 \geq 8$ keV

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) Bounds for the N_1 – DM sterile neutrino

Production in decays of GeV scale scalar

- *X* oscillates coherently
- Oscillating Majorana mass for $M_1(t) \sim M_1 + M_A \sin(m_X t)$
- Narrow resonances for $v \rightarrow N_1$ at $\rho \simeq \frac{M_A^2}{4 n m_\chi}$
- Effective at low temperatures only

• Scalar field only induces the resonance

[FB, Chudaykin, Gorbunov – very soon]

Assumptions

- There are three right-handed neutrinos N_1 , N_2 , N_3
- At low energies they have Dirac and Majorana mass terms
- They are charged under some (non-SM) gauge group, with the (right) gauge boson mass *M*

Thermal history

- DM Sterile neutrinos N_1 enter thermal equilibrium
- Their abundance later diluted *S* times by out of equilibrium decay of $N_{2,3}$
- Leptogenesys usual (resonant) in $N_{2,3}$ decays.

Note: c.f. A.Caputo's talk on Monday – either very small *g^R*

[\[FB, Hettmansperger, Lindner'10,](#page-49-7) [Nemevsek, Senjanovic, Zhang'12\]](#page-49-8)

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) DM mass bounds (from observed DM structure)

Phase space distribution is now different, and corresponds to the *thermal relic case*

$$
f(\pmb{\rho}) = \frac{1}{\exp\left(\frac{\pmb{\rho}}{ \mathcal{T}_{\text{v}} / \mathcal{S}}\right) + 1}
$$

So, *N*¹ are now *cooled*

Ly- α bound – structure formation [Boyarsky, Lesgourgues, Ruchayskiy, Viel'09, Viel, Becker, Bolton, Haehnelt'13] *M*₁ > 1.5 – 3.3 keV

For entropy diluted sterile neutrinos

- [SM, Cosmology and sterile neutrinos](#page-2-0)
- [X-ray observations](#page-4-0)
- Pure v [MSM just three sterile neutrinos](#page-12-0)
- [Other DM generation mechanisms](#page-29-0)
- 5 [Laboratory searches](#page-38-0)

Creation and *detection*

Suppressed by mixing angle θ^4

Detection: X-ray experiments

Sterile *N* in the DM clouds decay by the channel $N \rightarrow \nu \gamma$ providing the X-ray line with $E_{\gamma} = M/2$. Limit on θ^2 can be deduced as far as Ω_{DM} is known

Creation only

- **•** Forbidden decays
- Decay kinematics

Partial kinematics kink search in electron beta decay spectrum.

Full kinematics event-by-event mass measurement!

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0) Troitsk – nu-mass

Recent best laboratory bounds. arXiv:1703.10779

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0)

KATRIN – TRISTAN upgrade

Promised future

beta decay spectrum width N_1

[Outline](#page-1-0) [Introduction](#page-2-0) [X-ray observations](#page-4-0) ν[MSM](#page-12-0) [Beyond](#page-29-0) νMSM [Laboratory searches](#page-38-0) [Conclusions](#page-45-0)

Beta decay – Full kinematic reconstruction

Neutrino mass is reconstructed from observed momenta in each event

$$
m_v^2 = (Q - E_p^{\text{kin}} - E_e^{\text{kin}})^2 - (\mathbf{p} + \mathbf{k})^2
$$

For 3 H: $Q = 18.591$ keV

- Typical ion energy $E_{\rho}^{\rm kin}$ \sim 1 eV or $|{\bf p}|$ \sim 100keV
- Typical electron energy *E*^{kin} ∼ 10keV

HUNTER experiment (Heavy Unseen Neutrinos by Total Energy-momentum Reconstruction)

Phase 1 (proof of principle) funded by Keck Foundation

Existing limits and future coverage of HUNTER experiment

- keV scale sterile neutrino is a great DM candidate!
- **•** Experiment:
	- X-rays already seen?!
	- \bullet Laboratory hard...

waiting for further experimens

but there are attempts!

- Theory:
	- What is the best way to make them cool?

Line follows the Dark Matter halo profiles

FIG. 2: The line's brightness profile in M31 (left) and the Perseus cluster (right). An NFW DM distribution is assumed, the scale r_s is fixed to its best-fit values from [22] (M31) or [23] (Perseus) and the overall normalization is adjusted to pass through the left-most point.

No line seen from the blanc sky **5 Flux x 106 [cts/cm2/sec]**

FIG. 3: Blank sky spectrum and residuals.

Constraints summary

The entropy is effectively generated if the right-handed gauge scale is

$$
M > g_{*f}^{-1/8} \left(\frac{M_2}{1 \text{ GeV}} \right)^{3/4} (10 \div 16) \text{ TeV}
$$

- T. Asaka and M. Shaposhnikov *Phys. Lett.* **B620** (2005) 17–26, [hep-ph/0505013](http://xxx.lanl.gov/abs/hep-ph/0505013).
- M. Shaposhnikov and I. Tkachev *Phys. Lett.* **B639** (2006) 414–417, [hep-ph/0604236](http://xxx.lanl.gov/abs/hep-ph/0604236).
- F. Bezrukov and D. Gorbunov *JHEP* **1005** (2010) 010, [arXiv:0912.0390](http://xxx.lanl.gov/abs/0912.0390).
- F. Bezrukov, H. Hettmansperger and M. Lindner *Phys.Rev.* **D81** (2010) 085032, [arXiv:0912.4415](http://xxx.lanl.gov/abs/0912.4415).
- M. Nemevsek, G. Senjanovic and Y. Zhang *JCAP* **1207** (2012) 006, [arXiv:1205.0844](http://xxx.lanl.gov/abs/1205.0844).
- T. Asaka, S. Blanchet and M. Shaposhnikov *Phys. Lett.* **B631** (2005) 151–156, [hep-ph/0503065](http://xxx.lanl.gov/abs/hep-ph/0503065).
- A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov *Ann.Rev.Nucl.Part.Sci.* **59** (2009) 191–214, [arXiv:0901.0011](http://xxx.lanl.gov/abs/0901.0011).
- L. Canetti, M. Drewes and M. Shaposhnikov *Phys.Rev.Lett.* **110** (2013) 061801, [arXiv:1204.3902](http://xxx.lanl.gov/abs/1204.3902).
- F. Bezrukov *Phys. Rev.* **D72** (2005) 071303, [hep-ph/0505247](http://xxx.lanl.gov/abs/hep-ph/0505247).

F

- A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel *JCAP* **0905** (2009) 012, [arXiv:0812.0010](http://xxx.lanl.gov/abs/0812.0010).
- M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt *Physical Review* **D88** (2013), no. 4, 043502, [arXiv:1306.2314](http://xxx.lanl.gov/abs/1306.2314).