Cosmological effects of DM- γ scattering

Invisibles Workshop, 06/09/18, Karlsruhe based on arXiv 1802.06589 & arXiv 1807.10034 **Julia Stadler** and Céline Bœhm

This project has received funding/support from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 674896.

Being agnostic about DM properties

 ΛCDM assumes DM is completely collisionless and has zero velocity. However, one can ask...

CMB constraints on γ -DM scattering

 ΛCDM assumes DM is completely collisionless and has zero velocity. However, one can ask...

▷ Accurate treatment of the tight coupling regime.

- ▷ Parameter constraints including Planck polarisation data.
- \triangleright Inclusion of the DM sound speed.

▷ Extension to multi-component DM ("mixed DM").

What have we improved?

▷ Accurate treatment of the tight coupling regime.

The impact is below the Planck sensitivity.

▷ Parameter constraints including Planck polarisation data.

▷ Inclusion of the DM sound speed.

▷ Extension to multi-component DM ("mixed DM").

Constraints from Planck 2015

 \rightarrow Computation of CMB spectra with CLASS [Blas, Lesgourgues, Tram (2011)]

[arXiv 1802.0658]

- \rightarrow MCMC sampling with MontePython [Audren, Lesgourgues et al. (2012)]
- \rightarrow Parameter Space: 6 Λ CDM parameters + $u_{\gamma DM}$

DM sound speed

$$r_{\gamma \rm DM}^2 = rac{k_{\rm B} T_{\gamma \rm DM}}{m_{\gamma \rm DM}} \left[1 - rac{1}{3} \, rac{\partial \ln T_{\gamma \rm DM}}{\partial \ln a} \right]$$

\rightarrow Effect on the CMB: Irrelevant for $m_{\gamma DM} \ge 10 \, \mathrm{keV}$.

 \rightarrow Effect on P(k): Can be significant if $m_{\gamma \text{DM}} \leq 1 \text{ GeV}.$

Mixed DM: matter power spectrum

DM is composed of an interacting (γ DM) and a collissionless (CDM) component $\Rightarrow f_{\gamma DM} = \Omega_{\gamma DM} / (\Omega_{\gamma DM} + \Omega_{CDM}).$

