Thermalization of inelastic dark matter in the Sun

Stefan Clementz

KTH, Royal Institute of Technology

Eur. Phys. J. C78, (2018) no.5, 386, arXiv:1802.06880 In collaboration with Mattias Blennow and Juan Herrero-Garcia

Invisibles 2018, 06/09/2018

Indirect detection: Look for high energy neutrinos from DM annihilation in the Sun

Motivation

Scattering mode:

 Two states separated in mass by

$$\delta = m_{\chi^*} - m_{\chi}$$

- $\delta > 0$: endothermic $\delta < 0$: exothermic
- Altered scattering kinematics

When captured by the Sun

- Does it thermalize? Impacts the annihilation rate
- Enhanced evaporation due to boost in $\chi^* \to \chi$ scattering

Simulate the thermalization process to find out!

- Discretize DM orbits as states α with definite E_i and L_i
- Numerically calculate:
 - $C_{\alpha} = \text{Capture into state } \alpha$
 - $\Sigma_{\alpha\beta}=\mbox{Scattering}$ rate from state β to α
- Evolve initial distribution according to

$$\dot{f}_{\alpha} = \sum_{\beta} \Sigma_{\alpha\beta} f_{\beta} \longrightarrow \qquad \vec{f}(t) = e^{\Sigma t} \vec{f}(0)$$

Evolving a distribution over a solar lifetime

• No χ^* survives

Annihilation

Comparing annihilation between thermal and our simulated distributions

- 1. Dark matter does not thermalize
- 2. Equilibrium between annihilation and capture not guaranteed
- 3. No enhanced evaporation due to $\chi^* \to \chi$ scattering

- 1. Dark matter does not thermalize
- 2. Equilibrium between annihilation and capture not guaranteed
- 3. No enhanced evaporation due to $\chi^* \to \chi$ scattering

Thank you!