The Dawn of FIMP Dark Matter

Based on: NB, Matti Heikinheimo, Tommi Tenkanen, Kimmo Tuominen & Ville Vaskonen 1706.07442 [hep-ph] - Int.J.Mod.Phys. A32 (2017) no.27, 1730023

Invisibles Workshop September 6th, 2018

Thermal Collisionless Cold Dark Matter

Early Universe: DM in **thermal equilibrium** with the Standard Model.

Due to the expansion of the Universe DM particles fall **out of chemical equilibrium** and cannot annihilate anymore.

R. talk by Catena

A relic density of DM is obtained which remains constant.

→ Collisionless cold WIMP Dark Matter

WIMP DM typically requires: $\langle \sigma v \rangle \sim \text{few } 10^{-26} \text{ cm}^3/\text{s}$

* GeV to TeV masses* O(1) couplings DM-SM

→ Independent on initial conditions!

R. talk by Catena

WIMP DM typically requires: $<\sigma v > \sim \text{few } 10^{-26} \text{ cm}^3/\text{s}$

* GeV to TeV masses* O(1) couplings DM-SM

 \rightarrow Independent on initial conditions!

Over the last decades a huge worldwide effort to detect WIMP DM using a multi-channel and multi-messenger approach... but no compelling detection so far!

WIMP Dark Matter under Tension

But, what if DM is not a WIMP?

Dark Matter as a FIMP (Feebly Interacting Massive Particle)

FIMP / WIMP Dark Matter

WIMP vs FIMP Dark Matter

$$\frac{dn_{\chi}}{dt} + 3 H n_{\chi} = -\langle v\sigma_{\chi} \rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2 \right]$$

FIMP DM typically requires:

- * Very suppressed DM-SM interaction rate to avoid thermalization between the dark and the visible sectors
 * koV to > DoV massed
- * keV to > PeV masses!
- * Usually assumed a dark sector with a negligible initial population
 - → Dependent on initial conditions!

A plethora of models for FIMP DM:

- * different DM properties
- * different mediators (spin, masses...)
- * Higgs portal, vector portal, neutrino portal
- * Decays or annihilations

The Simplest DM model ever: Singlet Scalar Dark Matter

just as an example :-)

Singlet Scalar DM

McDonald '07

S is a singlet scalar, protected by a Z_2

$$V = \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

Singlet Scalar DM

McDonald '07

S is a singlet scalar, protected by a Z_2

$$V = \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

3 free parameters: * m_s DM mass * λ_{HS} Higgs portal * λ_s DM quartic coupling

 \leftarrow Concentrated on this

$$\leftarrow$$
 ~ Ignored!

IR FIMP Dark Matter

IR FIMP:

- * Small interaction rates due to renormalizable operators with *O*(10⁻¹⁰) couplings SM-DM
- * Production at T ~ Max(m_{DM} , $m_{mediator}$)

IR FIMP Dark Matter

IR FIMP:

- * Small interaction rates due to renormalizable operators with *O*(10⁻¹⁰) couplings SM-DM
- * Production at T ~ Max(m_{DM} , $m_{mediator}$)

Nicolás BERNAL - UAN

 $O(10^{-10})$ is unnaturally small... \rightarrow but could be *technically natural*!

IR FIMP Dark Matter

IR FIMP:

- * Small interaction rates due to renormalizable operators with *O*(10⁻¹⁰) couplings SM-DM
- * Production at T ~ Max(m_{DM} , $m_{mediator}$)
- * But could be much larger O(10⁻⁵) in non-standard cosmologies!!

UV FIMP Dark Matter

UV FIMP:

* Small interaction rates due to non-renormalizable operators with *high dependence on T*

$$\langle \sigma v \rangle \simeq \frac{T^n}{M^{n+2}}$$

For n < 6: Production at T ~ T_{RH}

UV FIMP Dark Matter

 T_{max}

 10^{3}

UV FIMP:

* Small interaction rates due to non-renormalizable operators with high dependence on T

$$\langle \sigma v \rangle \simeq \frac{T^n}{M^{n+2}}$$

For n < 6: Production at T ~ T_{RH}

For n \geq 6: Production at T ~ T_{max}

 T_{RH} 10^{10} Ы 10^{8} 10^{6} 10^{4} 10^{-12} 10^{-9} 10^{0} 10^{-6} 10^{-3} a/a_0

 10^{14}

 10^{12}

So far we have completely ignored possible interactions within the Dark Sector...:-/

Possible variations from the pure FIMP paradigm :-)

Dark Matter Phase Diagram

Nicolás BERNAL

Nicolás BERNAL - UAN

Dark Freeze-out: FIMP + SIMP Dark Matter

$\begin{array}{l} SIMP \ DM \\ 4 \rightarrow 2 \ annihilations \end{array}$

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v^3 \rangle_{4 \to 2} \left(n^4 - n^2 n_{\rm eq}^2 \right)$$

A Z_2 symmetry forbids $3 \rightarrow 2$ annihilations... but allows $4 \rightarrow 2$ annihilations!

Could be the dominant channel if the SM-DM portal is very suppressed...

... like in the FIMP scenario!

Singlet Scalar DM $4 \rightarrow 2$ annihilations

$$\langle \sigma v^3 \rangle_{4 \to 2} \sim \frac{27\sqrt{3}}{8\pi} \frac{\lambda_S^4}{m_S^8}$$

Singlet Scalar DM $4 \rightarrow 2$ annihilations

T_{SM} = T_{DM} @ DM freeze-out

Singlet Scalar DM $4 \rightarrow 2$ annihilations

Singlet Scalar DM Dark Freeze-out via a FIMP mechanism

Reannihilation: ~ FIMP and Dark FO simultaneously

Reannihilation

The dark freeze-out occurs before the yield from the visible sector (à la FIMP) has ended

Detecting FIMPs

By construction, the coupling must be so feeble that the DM particle never reaches thermal equilibrium with the visible sector

 \Rightarrow FIMPs are inherently very difficult to test

Direct Detection

Light DM has to have a large number density \Rightarrow enhances the detection rates

Multiple experimental setups have been suggested for the detection of sub-GeV DM

DM with Light mediators \Rightarrow enhances the detection rates

Hambye, Tytgat, Vandecasteele & Vanderheyden '18

Indirect Detection

Very challenging...

- PeV IceCube events could come from decaying FIMP DM
- The 3.5 keV line from decaying FIMP DM
- X-rays bounds if light DM or light mediators

Collider Searches

Very challenging...

- Collider experiments are typically not sensitive to FIMP DM, due to the small production cross section
- However, appearance of *displaced vertices* is possible!
- Look for the mediators, which do not have to be feebly coupled to the SM

Astro & Cosmo Signatures

- Small-scale structures: FIMP DM with sizable self-interactions can have a strong impact in the structure formation → "too big to fail" and "missing satellites" problems
- Non-observation of DM isocurvature in CMB places constraints on FIMP properties
 → Lower bounds on the SM-DM coupling
- BBN bounds
- Lyman-a

Conclusions & Outlook

- The nature of Dark Matter is still unknown
- The FIMP framework provides for a compelling alternative to the standard WIMP paradigm
- The *unnatural* small couplings could be *technically natural* and enhanced by nonstandard cosmologies
- DM could naturally have a different temperature
- FIMP DM: IR vs UV
- Multiple possibilities beyond the simplest FIMP scenario: Dark Freeze-out, Reannihilation...
- Cosmological and astrophysical observations provide a valuable resource on testing different DM models
- Continue searches for WIMPs, FIMPs, and other DM candidates (Colliders, direct and indirect detection...)

Vielen Dank!

Dark Matter Self-Interactions

The Higgs tends to annihilate into DM BR($h \rightarrow inv.$) < 20%

* $\lambda_{HS} < 7 \times 10^{-3}$

How to produce such a Self-Interacting Dark Matter?

WIMP DM :-/

DM can (only) annihilate into light fermions other annihilation channels kinematically closed!

$$\begin{split} &\langle \sigma_{SS \to f\bar{f}} \, v \rangle \sim \frac{\lambda_{HS}^2}{\pi} \, \frac{m_f^2}{m_h^4} \\ &\langle \sigma_{SS \to f\bar{f}} \, v \rangle \ll 10^{-26} \, \mathrm{cm}^3 / \mathrm{s} \end{split}$$

- \rightarrow Universe overclosed
- \rightarrow SSDM with sizable self-interactions can not be a WIMP

How to produce such a temperature difference?

<u>DM Production</u> * *Out-of-equilibrium production* à *la freeze-in*: **h** → **SS** DM in kinetic equilibrium via **2** ↔ **2** DM inherits SM temperature

* DM populates rapidly via out-of-equilibrium $2 \rightarrow 4$. Price to pay: Dramatic decrease of T_{DM}

Generating $T_{DM} < T_{SM}$ via the Higgs Portal

Singlet Scalar DM Dark Freeze-out via a FIMP mechanism

