Bimetric Gravity and Dark Matter

Angnis Schmidt-May

Max-Planck-Institut für Physik

Invisibles Workshop Karlsruhe Institute of Technology, 06.09.18

Navigation

The Ghost-Free Theory

Physics of Massive Spin-2 Fields

Cosmology

Summary

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks ψ^a

Spin 1: gluons, photon, W- & Z-boson A_{μ}

Spin 2: graviton $g_{\mu\nu}$

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks ψ^a

Spin 1: gluons, photon, W- & Z-boson A_{μ}

Spin 2: graviton $g_{\mu\nu}$

+ Supersymmetry

Spin 2:

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks ψ^a

new models are usually built using more copies of these particles

Spin 1: gluons, photon, W- & Z-boson A_{μ}

graviton $g_{\mu\nu}$ less understood...

Spin 2:

Standard Model of Particle Physics & General Relativity

MASSLESS !

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks ψ^a

Spin 1: gluons, photon, W- & Z-boson A_{μ}

graviton $g_{\mu\nu}$

massless & massive

Spin 2:

Standard Model of Particle Physics & General Relativity

Spin 0: Higgs boson ϕ

Spin 1/2: leptons, quarks ψ^a

Spin 1: gluons, photon, W- & Z-boson A_{μ}

graviton $g_{\mu\nu}$

just one field...

multiplets of

gauge groups

How do we make a spin-2 field massive ?

Can several spin-2 fields interact ?

Massless Theory

General Relativity

= classical nonlinear field theory for metric tensor $g_{\mu\nu}$

Einstein-Hilbert action:
$$S_{\rm EH}[g] = M_{\rm P}^2 \int d^4x \sqrt{g} \left(R(g) - 2\Lambda \right)$$

Einstein's equations:
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$$

 describes the two degrees of freedom of a self-interacting, massless spin-2 particle

Massless Theory

General Relativity

= classical nonlinear field theory for metric tensor $g_{\mu\nu}$

Einstein-Hilbert action:
$$S_{\rm EH}[g] = M_{\rm P}^2 \int d^4x \sqrt{g} \left(R(g) - 2\Lambda \right)$$

Einstein's equations: $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 0$
two derivatives
kinetic term

of a self-interacting, massless spin-2 particle

General Relativity

unique description of self-interacting massless spin-2 field

Mass Term ... should not contain derivatives nor loose indices. Examples: scalar (spin 0) vector (spin 1) $-\partial_{\mu}\phi\partial^{\mu}\phi - m^2\phi^2$ $-F^{\mu\nu}F_{\mu\nu}-m^2A^{\mu}A_{\mu}$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu\nu}g_{\mu\nu} = 4$ This is not a mass term. Mass Term... should not contain derivatives nor loose indices.Examples:scalar (spin 0)vector (spin 1) $-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - m^{2}\phi^{2}$ $-g^{\mu\rho}g^{\nu\sigma}F_{\rho\sigma}F_{\mu\nu} - m^{2}g^{\mu\nu}A_{\mu}A_{\nu}$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu\nu}g_{\mu\nu} = 4$ This is not a mass term.

Simplest way out: Introduce second "metric" to contract indices:

$$g^{\mu\nu}f_{\mu\nu} = \text{Tr}(g^{-1}f) \qquad f^{\mu\nu}g_{\mu\nu} = \text{Tr}(f^{-1}g)$$

Mass Term... should not contain derivatives nor loose indices.Examples:scalar (spin 0)vector (spin 1) $-g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - m^{2}\phi^{2}$ $-g^{\mu\rho}g^{\nu\sigma}F_{\rho\sigma}F_{\mu\nu} - m^{2}g^{\mu\nu}A_{\mu}A_{\nu}$

For the spin-2 tensor contracting indices of the metric gives: $g^{\mu\nu}g_{\mu\nu} = 4$ This is not a mass term.

Simplest way out: Introduce second "metric" to contract indices:

$$g^{\mu\nu}f_{\mu\nu} = \operatorname{Tr}(g^{-1}f)$$
 $f^{\mu\nu}g_{\mu\nu} = \operatorname{Tr}(f^{-1}g)$
Massive gravity action: $S_{\mathrm{MG}}[g] = S_{\mathrm{EH}}[g] - \int d^4x \ V(g, f)$

Bimetric Theory

Nonlinear action for two interacting tensors:

$$S_{\rm b}[g,f] = m_g^2 \int \mathrm{d}^4 x \sqrt{g} \left(R(g) - 2\Lambda \right) + m_f^2 \int \mathrm{d}^4 x \sqrt{f} \left(R(f) - 2\tilde{\Lambda} \right) - \int \mathrm{d}^4 x \, V(g,f)$$

both metrics are dynamical and treated on equal footing

should describe massive & massless spin-2 field (5+2 d.o.f.)

Bimetric Theory

Nonlinear action for two interacting tensors:

$$S_{\rm b}[g,f] = m_g^2 \int \mathrm{d}^4 x \sqrt{g} \left(R(g) - 2\Lambda \right) + m_f^2 \int \mathrm{d}^4 x \sqrt{f} \left(R(f) - 2\tilde{\Lambda} \right) - \int \mathrm{d}^4 x \, V(g,f)$$

both metrics are dynamical and treated on equal footing

This looks good, but in general the theory has a ghost!

de Rham, Gabadadze, Tolley (2010); Hassan, Rosen (2011)

$$S_{b}[g,f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g)$$

+ $m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g,f)$

$$V(g,f) = m^4 \sqrt{g} \sum_{n=0}^4 \beta_n e_n \left(\sqrt{g^{-1}f} \right)$$

- \gg 3 interaction parameters β_n
- \Rightarrow square-root matrix S defined through $S^2 = g^{-1}f$

de Rham, Gabadadze, Tolley (2010); Hassan, Rosen (2011)

$$S_{\rm b}[g,f] = m_g^2 \int \mathrm{d}^4 x \sqrt{g} R(g) + m_f^2 \int \mathrm{d}^4 x \sqrt{f} R(f) - \int \mathrm{d}^4 x V(g,f)$$

$$\int V(g,f) = m^4 \sqrt{g} \sum_{n=0}^4 \beta_n e_n \left(\sqrt{g^{-1}f} \right) = m^4 \sqrt{f} \sum_{n=0}^4 \beta_{4-n} e_n \left(\sqrt{f^{-1}g} \right)$$

elementary symmetric polynomials:

$$e_1(S) = \operatorname{Tr}[S] \qquad e_2(S) = \frac{1}{2} \left((\operatorname{Tr}[S])^2 - \operatorname{Tr}[S^2] \right)$$
$$e_3(S) = \frac{1}{6} \left((\operatorname{Tr}[S])^3 - 3 \operatorname{Tr}[S^2] \operatorname{Tr}[S] + 2 \operatorname{Tr}[S^3] \right)$$

Mass spectrum

☆ Maximally symmetric solutions:

$$ar{f}_{\mu
u}=c^2ar{g}_{\mu
u}$$
 with $c={\sf const.}$

Hassan, ASM, von Strauss (2012)

☆ Perturbations around proportional backgrounds:

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu} \qquad f_{\mu\nu} = c^2 \bar{g}_{\mu\nu} + \delta f_{\mu\nu}$$

☆ Can be diagonalised into mass eigenstates:

$$\delta G_{\mu\nu} \propto \delta g_{\mu\nu} + \alpha^2 \delta f_{\mu\nu}$$
 massless (2 d.o.f.)
 $\delta M_{\mu\nu} \propto \delta f_{\mu\nu} - c^2 \delta g_{\mu\nu}$ massive (5 d.o.f.)

with Fierz-Pauli mass $m_{\mathrm{FP}} = m_{\mathrm{FP}}(lpha, eta_n, c)$

Ghost-free bimetric theory

unique description of massless + massive spin-2 field

What is the physical metric ?

How does matter couple to the tensor fields ?

Matter Coupling

Yamashita, de Felice, Tanaka; de Rham, Heisenberg, Ribeiro (2015)

$$S_{b}[g,f] = m_{g}^{2} \int d^{4}x \sqrt{g} R(g) + m_{f}^{2} \int d^{4}x \sqrt{f} R(f) - \int d^{4}x V(g,f) + \int d^{4}x \sqrt{g} \mathcal{L}_{matter}(g,\phi)$$

Absence of ghosts: only one metric can couple to matter! $\Rightarrow g_{\mu\nu}$ is gravitational metric

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)

$$S_{\rm b}[g,f] = m_g^2 \int \mathrm{d}^4 x \sqrt{g} R(g) + m_f^2 \int \mathrm{d}^4 x \sqrt{f} R(f) - \int \mathrm{d}^4 x V(g,f) + \int \mathrm{d}^4 x \sqrt{g} \mathcal{L}_{\rm matter}(g,\phi)$$

(linearised) gravitational metric:

$$\delta g_{\mu
u} \propto \delta G_{\mu
u} - lpha^2 \delta M_{\mu
u} \qquad (lpha \equiv m_f/m_g) \ {
m massless} \ {
m massive}$$

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)

$$S_{\rm b}[g,f] = m_g^2 \int \mathrm{d}^4 x \sqrt{g} R(g) + m_f^2 \int \mathrm{d}^4 x \sqrt{f} R(f) - \int \mathrm{d}^4 x V(g,f) + \int \mathrm{d}^4 x \sqrt{g} \mathcal{L}_{\rm matter}(g,\phi)$$

(linearised) gravitational metric:

$$\delta g_{\mu
u} \propto \delta G_{\mu
u} - lpha^2 \delta M_{\mu
u}$$
 ($lpha \equiv m_f/m_g$) massless massive

The gravitational metric is not massless but a superposition of mass eigenstates. Max, Platscher, Smirnov (2017): analysis of gravitational wave oscillations

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)

$$S_{\rm b}[g,f] = m_g^2 \int \mathrm{d}^4 x \sqrt{g} R(g) + m_f^2 \int \mathrm{d}^4 x \sqrt{f} R(f) - \int \mathrm{d}^4 x V(g,f) + \int \mathrm{d}^4 x \sqrt{g} \mathcal{L}_{\rm matter}(g,\phi)$$

(linearised) gravitational metric:

$$\delta g_{\mu
u} \propto \delta G_{\mu
u} - lpha^2 \delta M_{\mu
u}$$
 ($lpha \equiv m_f/m_g$) massless massive

for small $\alpha = m_f/m_g$ gravity is dominated by the massless mode the massive spin-2 field interacts only weakly with matter

Baccetti, Martin-Moruno, Visser (2012); Hassan, ASM, von Strauss (2012/14); Akrami, Hassan, Koennig, ASM, Solomon (2015)

$$S_{\rm b}[g,f] = m_g^2 \int \mathrm{d}^4 x \sqrt{g} R(g) + m_f^2 \int \mathrm{d}^4 x \sqrt{f} R(f) - \int \mathrm{d}^4 x V(g,f) + \int \mathrm{d}^4 x \sqrt{g} \mathcal{L}_{\rm matter}(g,\phi)$$

$$\alpha = m_f/m_g \to 0$$

is the General Relativity limit of bimetric theory

(when all other parameters are fixed, this makes the spin-2 mass $m_{\rm FP}$ infinitely large)

Ghost-free bimetric theory

General Relativity + additional tensor field

Structure of Vertices

(bimetric action expanded in mass eigenstates)

Quadratic (Fierz-Pauli)

δG^2	$\delta G \delta M$	δM^2
$1,\Lambda$	0	$1,\Lambda,m_{ m FP}^2$

what about higher orders?

$$\begin{split} S &= \frac{1}{2} \int \mathrm{d}^4 x \, \left[\delta G_{\mu\nu} \mathcal{E}^{\mu\nu\rho\sigma} \delta G_{\rho\sigma} &+ \delta M_{\mu\nu} \mathcal{E}^{\mu\nu\rho\sigma} \delta M_{\rho\sigma} \right. \\ &\left. - \left. \frac{m_{\mathrm{FP}}^2}{2} \left(\delta M^{\mu\nu} \delta M_{\mu\nu} - \delta M^2 \right) \right] + \mathcal{O} \left(\frac{1}{m_{\mathrm{Pl}}} \right) \end{split}$$

Structure of Vertices

Quadratic (Fierz-Pauli)

δG^2	$\delta G \delta M$	δM^2
$1,\Lambda$	0	$1,\Lambda,m_{ m FP}^2$

Cubic (suppressed by $m_{ m Pl}^{-1}$)

δG^3	$\delta G^2 \delta M$	$\delta G \delta M^2$	δM^3
$1,\Lambda$	0	$1,\Lambda,m_{ m FP}^2$	$\begin{array}{l} \alpha,\alpha\Lambda,\alpha m_{\rm FP}^2 \\ \frac{1}{\alpha},\frac{1}{\alpha}\Lambda,\frac{1}{\alpha}m_{\rm FP}^2 \end{array}$

$$m_{\rm Pl} = m_g \sqrt{1 + \alpha^2}$$

Babichev, Marzola, Raidal, ASM,

Urban, Veermäe, von Strauss (2016)

Structure of Vertices

Babichev, Marzola, Raidal, ASM, Urban, Veermäe, von Strauss (2016)

Quadratic (Fierz-Pauli)

δG^2	$\delta G \delta M$	δM^2
$1,\Lambda$	0	$1,\Lambda,m_{ m FP}^2$

Cubic (suppressed by $m_{ m Pl}^{-1}$)

δG^3	$\delta G^2 \delta M$	$\delta G \delta M^2$	δM^3
$1,\Lambda$	0	$1,\Lambda,m_{ m FP}^2$	$\begin{array}{l} \alpha,\alpha\Lambda,\alpha m_{\rm FP}^2 \\ \frac{1}{\alpha},\frac{1}{\alpha}\Lambda,\frac{1}{\alpha}m_{\rm FP}^2 \end{array}$

self-interactions of massless spin-2 sum up to General Relativity no vertices giving rise to decay of massive into massless spin-2

massive spin-2 particle gravitates like baryonic matter

self-interactions of massive spin-2 are enhanced in the GR limit

The cosmological cake

A DEC

The cosmological cake

25% Dark Matter

70% Dark Energy

Viable cosmology with self-accelerating solutions

10/14

Akrami, Hassan, Könnig, ASM, Solomon (2015); Könnig, Patil, Amendola (2014); Akrami, Koivisto, Mota, Sandstad (2013); Volkov; von Strauss, ASM, Enander, Mörtsell, Hassan; Comelli, Crisostomi, Nesti, Pilo (2011) 5% normal matter

"partial masslessness"

Apolo, Hassan (2016) Hassan, von Strauss, ASM (2012/15) Deser, Waldron (2001)

> 70% Dark Energy

Viable cosmology with self-accelerating solutions

Akrami, Hassan, Könnig, ASM, Solomon (2015); Könnig, Patil, Amendola (2014); Akrami, Koivisto, Mota, Sandstad (2013); Volkov; von Strauss, ASM, Enander, Mörtsell, Hassan; Comelli, Crisostomi, Nesti, Pilo (2011)

25%

Dark Matter

5% normal matter

Symmetries?

"partial masslessness"

Apolo, Hassan (2016) Hassan, von Strauss, ASM (2012/15) Deser, Waldron (2001)

> 70% Dark Energy

Viable cosmology with self-accelerating solutions

Akrami, Hassan, Könnig, ASM, Solomon (2015); Könnig, Patil, Amendola (2014); Akrami, Koivisto, Mota, Sandstad (2013); Volkov; von Strauss, ASM, Enander, Mörtsell, Hassan; Comelli, Crisostomi, Nesti, Pilo (2011)

25%

Dark Matter

massive spin-2?

Babichev, Marzola, Raidal, ASM, Urban, Veermäe, von Strauss (2016); Aoki, Mukohyama (2016);

5% normal matter

10/14

Spin-2 Dark Matter

Babichev, Marzola, Raidal, ASM, Urban, Veermäe, von Strauss (2016)

Recall the (linearised) gravitational metric: δ

$$\delta g_{\mu
u} \propto \delta G_{\mu
u} - lpha^2 \delta M_{\mu
u}$$
massless massive

and the General Relativity limit of bimetric theory: $\alpha = m_f/m_g
ightarrow 0$

 \Rightarrow gravity is weak because the physical Planck mass is large ($m_{
m Pl}=m_g\sqrt{1+lpha^2}$)

massive spin-2 field decouples from matter, interacts only with gravity

Features

heavy spin-2 field automatically resembles dark matter when gravity resembles general relativity

interactions with baryonic matter are suppressed by the Planck mass

spin-2 mass and interaction scale are on the order of a few TeV

Features

heavy spin-2 field automatically resembles dark matter when gravity resembles general relativity

interactions with baryonic matter are suppressed by the Planck mass

🛞 spin-2 mass and interaction scale are on the order of a few TeV

Chu & Garcia-Cely (2017): may be lowered to MeV by taking into account self-interactions of massive spin-2

Gonzalez, ASM, von Strauss (2017):

interesting new effects for more than one massive spin-2 field

Features

interactions with baryonic matter are suppressed by the Planck mass

🔅 spin-2 mass and interaction scale are on the order of a few TeV

no need for extra fields, artificial symmetries or fine tuning

bimetric theory could explain dark matter in the context of gravity

massive spin-2 field is a natural addition to the Standard Models

Massive spin-2 fields...

review: ASM, Mikael von Strauss; 1512.00021

🔅 provide one of the few known consistent modifications of GR

are uniquely described by ghost-free bimetric theory

could be a dark matter candidate whose coupling to baryonic matter is suppressed by the Planck scale

Larger theoretical framework: String Theory ? Additional symmetries ? Quantum gravity ?

Can we detect/observe the massive spin-2 ?

5 contraints on 10 components, equation propagates <u>5 degrees of freedom</u>

Trace equation contains two derivatives, not a constraint

Proportional solutions

Hassan, ASM, von Strauss (2012)

Ansatz:
$$ar{f}_{\mu
u}=c^2ar{g}_{\mu
u}$$
 with $c={\sf const.}$

$$R_{\mu\nu}(\bar{g}) - \frac{1}{2}\bar{g}_{\mu\nu}R(\bar{g}) + \Lambda_g(\alpha,\beta_n,c)\bar{g}_{\mu\nu} = 0$$
$$R_{\mu\nu}(\bar{g}) - \frac{1}{2}\bar{g}_{\mu\nu}R(\bar{g}) + \Lambda_f(\alpha,\beta_n,c)\bar{g}_{\mu\nu} = 0$$

so consistency condition: $\Lambda_g(\alpha, \beta_n, c) = \Lambda_f(\alpha, \beta_n, c)$ determines c

> Maximally symmetric backgrounds with $~R_{\mu
u}(ar{g})=\Lambda_gar{g}_{\mu
u}$

DM Production

- standard freeze-out does not work: no thermal equilibrium, expansion rate always dominates over interaction rate
- gravitational production does not work: required DM mass is too large and violates perturbativity bound
- ☆ freeze-in mechanism works: gives lower bound on DM mass

Higher-Derivative Action

Hassan, ASM, von Strauss (2013); Gording & ASM (2018)

Equations for $f_{\mu
u}$ can be solved perturbatively in $lpha=m_f/m_g$

$$\Rightarrow \text{ Higher-derivative action for } g_{\mu\nu}:$$

$$S_{\text{eff}}[g] = \int d^4x \sqrt{-g} \left[m_{\text{Pl}}^2 (R - 2\Lambda) + \frac{\alpha^4 c_{RR}}{m^2} \left(\frac{1}{3} R^2 - R^{\mu\nu} R_{\mu\nu} \right) \right] + \mathcal{O}(\alpha^6)$$
general relativity (Weyl tensor)² + total derivative

curvature corrections to GR capture effects of heavy spin-2 field

Hinterbichler & Rosen (2012)

Vierbein Formulation

$$g_{\mu\nu} = e^{a}_{\ \mu}\eta_{ab}e^{b}_{\ \nu} \qquad f_{\mu\nu} = \tilde{e}^{a}_{\ \mu}\eta_{ab}\tilde{e}^{b}_{\ \nu}$$

Einstein-Hilbert terms:
$$S_{\rm EH} = m_g^2 \epsilon_{abcd} \int \left(R^{ab} - \Lambda e^a \wedge e^b \right) \wedge e^c \wedge e^d$$

interaction terms:

$$S_{\rm int} = -m^4 \epsilon_{abcd} \int \left[\bar{\beta}_1 \ e^a \wedge e^b \wedge e^c \wedge \tilde{e}^d + \bar{\beta}_2 \ e^a \wedge e^b \wedge \tilde{e}^c \wedge \tilde{e}^d + \bar{\beta}_3 \ e^a \wedge \tilde{e}^b \wedge \tilde{e}^c \wedge \tilde{e}^d \right]$$

equivalent to bimetric theory and ghost-free only if $e^a_{\ \mu}\eta_{ab}\tilde{e}^b_{\ \nu} = e^a_{\ \nu}\eta_{ab}\tilde{e}^b_{\ \mu}$ existence of square-root and intersection of light cones (Hassan & Kocic, 2017)
natural generalization to other spacetime dimensions

☆ used to be a (nondynamical) ● which has been integrated out