CP Violation caused by another symmetry

Andreas Trautner

based on:

NPB883 (2014) 267-305 NPB894 (2015) 136-160 JHEP 1702 (2017) 103 arXiv

1402.0507 1502.01829 1612.08984 1808.07060 w/ M.-C. Chen, M. Fallbacher, K.T. Mahanthappa and M. Ratz
 w/ M. Fallbacher
 w/ M. Ratz
 w/ H.P. Nilles, M. Ratz., P. Vaudrevange

In*v*isibles18 Workshop Karlsruhe

7.9.18

Motivation

Standard Model flavor puzzle. Observed patterns:

Motivation

- Standard Model flavor puzzle.
 4x 3 masses, 2x 3 angles, 2x 1 CP violating phase(+2).
- Origin of CP violation?
 - CP violation established in quark sector, consistent with SM (CKM).
 - open question: CP violation in lepton sector ?
 - open question: Why $\overline{\theta} = (\theta + \arg \det y_u y_d) < 10^{-10}$? Why CPV *only* in FV processes?

Goal: Understand origin of CPV \Rightarrow hints for origin of flavor.

Outline

- Standard Model CP: a special outer automorphism
- What is an outer automorphism?
- CP violation as consequence of certain symmetries
- Example (toy-)model: $\mathrm{SU}(3) \to \mathrm{T}_7$ with CPV and $\overline{\theta} = 0$
- Conclusion

Physical CP transformations

Physical observable: Asymmetry \Leftrightarrow Basis–invariants, e.g. J.

$$\varepsilon_{i \to f} = \frac{\left|\Gamma(i \to f)\right|^2 - \left|\Gamma(\bar{\imath} \to \bar{f})\right|^2}{\left|\Gamma(i \to f)\right|^2 + \left|\Gamma(\bar{\imath} \to \bar{f})\right|^2} \Leftrightarrow J = \det\left[M_u M_u^{\dagger}, M_d M_d^{\dagger}\right]$$

CP conservation: $\varepsilon, J \stackrel{!}{=} 0$.

see also [Bernabéu, Branco, Gronau '86], [Botella, Silva '94]

Physical CP transformations

Physical observable: Asymmetry \Leftrightarrow Basis–invariants, e.g. J.

$$\varepsilon_{i \to f} = \frac{\left|\Gamma(i \to f)\right|^2 - \left|\Gamma(\overline{i} \to \overline{f})\right|^2}{\left|\Gamma(i \to f)\right|^2 + \left|\Gamma(\overline{i} \to \overline{f})\right|^2} \Leftrightarrow J = \det\left[M_u M_u^{\dagger}, M_d M_d^{\dagger}\right]$$

CP conservation: $\varepsilon, J \stackrel{!}{=} 0$. see also [Bernabéu, Branco, Gronau '86], [Botella, Silva '94] To warrant this: **need** a map $M_{u/d} \to M^*_{u/d}$. Equivalently:

$$\mathscr{L} \supset c \mathcal{O}(x) + c^* \mathcal{O}^{\dagger}(x) \qquad \Rightarrow \qquad \text{Fields} \xrightarrow{\mathcal{CP}} (\text{Fields})^*$$

Physical CP transformations

Physical observable: Asymmetry \Leftrightarrow Basis–invariants, e.g. J.

$$\varepsilon_{i \to f} = \frac{\left|\Gamma(i \to f)\right|^2 - \left|\Gamma(\overline{i} \to \overline{f})\right|^2}{\left|\Gamma(i \to f)\right|^2 + \left|\Gamma(\overline{i} \to \overline{f})\right|^2} \Leftrightarrow J = \det\left[M_u M_u^{\dagger}, M_d M_d^{\dagger}\right]$$

CP conservation: $\varepsilon, J \stackrel{!}{=} 0$. To warrant this: **need** a map $M_{u/d} \to M^*_{u/d}$. Equivalently:

Andreas Trautner

CP Violation caused by another symmetry, 7.9.18

CP transformation in the Standard Model In the Standard Model

 ${
m SU}(3)\otimes {
m SU}(2)\otimes {
m U}(1)$ and ${
m SO}(3,1)$,

physical CP is described by a *simultaneous* outer automorphism transformation of all symmetries which maps

for all representations of all symmetries.

[Grimus, Rebelo '95] [Buchbinder et al. '01] [AT '16]

Conservation of such a transformation warrants $\overline{\theta}$, $\delta_{QP} = 0$.

Violation of such a transformation is implied by experiment, and necessary requirement for baryogenesis. [Sakharov'67]

However: Why $\delta_{\rm CKM} \sim \mathcal{O}(1)$ while $\overline{\theta}_{\rm exp} < 10^{-10}$?

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, a²}.
- Outer automorphism group ("Out") of ℤ₃: generated by

 $u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$ (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\diamond}_7 a^2$ }.
- Outer automorphism group ("Out") of ℤ₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a $\stackrel{\leftrightarrow}{,}$ a²}.
- Outer automorphism group ("Out") of ℤ₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Abstract: Out is a reshuffling of symmetry elements. In words: Out is a "symmetry of the symmetry".

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a $\stackrel{\leftrightarrow}{,}$ a²}.
- Outer automorphism group ("Out") of Z₃: generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: u a u⁻¹ = a^2)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{\boldsymbol{r'}}(\mathbf{g})U^{-1} = \rho_{\boldsymbol{r}}(u(\mathbf{g})) , \qquad \forall \mathbf{g} \in G .$$

(consistency condition)

[Fallbacher, AT, '15] [Holthausen, Lindner, Schmidt, '13]

-
$$\rho_{r}(g)$$
: representation matrix for group element $g \in G$

- $u: g \mapsto u(g)$: outer automorphism

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a $\stackrel{\bullet}{\rightarrow}a^2$ }.
- Outer automorphism group ("Out") of \mathbb{Z}_3 : generated by

$$u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$$
 (think: u a u⁻¹ = a²)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{\mathbf{r'}}(\mathbf{g})U^{-1} = \rho_{\mathbf{r}}(u(\mathbf{g})), \quad \forall \mathbf{g} \in G.$$
(consistency \mathbf{r} Physical CP trafo
 $\mathbf{r} \mapsto \mathbf{r'} = \mathbf{r}^*$
 $u : g \mapsto u(g) :$ outer automorphism
Andreas Trautner CP Violation caused by another symmetry, 7.9.18

Outer automorphisms of groups

Outer automorphisms exist for continuous & discrete groups. There are easy ways to depict this:

Continuous groups:

Outer automorphisms of a simple Lie algebra are the symmetries of the corresponding Dynkin diagram.

Outer automorphisms of groups **Discrete groups:**

Outer automorphisms of a discrete group are symmetries of the character table (not 1:1).

			Q	Q	×22	~
	T_7	C_{1a}	C_{3a}	C_{3b}	C_{7a}	C_{7b}
	1_0	1	1	1	1	1
C	1 1	1	ω	ω^2	1	1
C	$\overline{1}_1$	1	ω^2	ω	1	1
2	3 1	3	0	0	η	η^*
5	• 3 1	3	0	0	η^*	η

$\Delta(54) \begin{vmatrix} C_{1a} & C_{3a} & C_{3b} & C_{3c} & C_{3d} & C_{2a} & C_{6a} & C_{6b} & C_{3e} & C_{3f} \end{vmatrix}$	f 1
	1
1 ₀ 1 1 1 1 1 1 1 1 1	
1 ₁ 1 1 1 1 1 -1 -1 -1 1	1
2 ₁ 2 2 -1 -1 -1 0 0 0 2	2
2_2 2 -1 2 -1 -1 0 0 0 2	2
s 2 ₃ 2 -1 -1 2 -1 0 0 0 2 2	2
2_4 2 -1 -1 -1 2 0 0 0 2	2
3_{1} 3_{1} 3_{2} 0_{1} 0_{2} 0_{2} 0_{2} 3_{2} 3_{2} 3_{2} 3_{2} 3_{2} 3_{2}	ω^2
$[3]{\overline{3}_1}$ 3 0 0 0 0 1 ω ω^2 $3\omega^2$ $3\omega^2$	ω
7 3_2 3 0 0 0 0 -1 $-\omega^2$ $-\omega$ 3ω 3ω	ω^2
$\begin{bmatrix} 1 & 3 \\ 3 & 0 & 0 & 0 & 0 & -1 & -\omega & -\omega^2 & 3\omega^2 & 3\omega^2 \end{bmatrix}$	ω

		Group	Out	Action on reps
	_	\mathbb{Z}_3	\mathbb{Z}_2	$m{r}~ ightarrow~m{r}^{*}$
The outer automorphisms	s group of any	$A_{n\neq 6}$	\mathbb{Z}_2	$m{r}~ ightarrow~m{r}^{*}$
("small") discrete group	can easily be	$S_{n\neq 6}$	/	/
found with GAP	[GAP]	$\Delta(27)$	$\operatorname{GL}(2,3)$	$m{r}_i ~ ightarrow~m{r}_j$
		$\Delta(54)$	S_4	$m{r}_i \ ightarrow \ m{r}_j$

Andreas Trautner

CP Violation caused by another symmetry, 7.9.18

 $r_i \rightarrow r_j$

Not this talk

Outer automorphisms by themself have interesting features:

- Allow to understand origin of "geometrical T violation". [Branco, Gerard, Grimus, '83], [Fallbacher, AT, '15]
- Deep connection to RGE flow of theories.
- Very useful tool to compute stationary points of potentials.

[Fallbacher, AT, '15]

• Systematic origin of emergent symmetries.

[AT '16]

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM.

 \Rightarrow "Definition" of CP in words:

CP is **a** special outer automorphism transformation which maps *all present* symmetry representations (global, local, space-time) to their complex conjugates.

[AT '16] This definition is consistent with the definitions in [Buchbinder et al. '01] & [Grimus, Rebelo '95]

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM.

 \Rightarrow "Definition" of CP in words:

CP is **a** special outer automorphism transformation which maps *all present* symmetry representations (global, local, space-time) to their complex conjugates.

This definition is consistent with the definitions in [Buchbinder et al. '01] & [Grimus, Rebelo '95]

Any such transformation:

- warrants physical CP conservation (if conserved),
- \Rightarrow must be broken (by observation).

Note that a physical CP transformation:

- does not have to be unique,
- does not have to be of order 2,

[Ecker, Grimus, Neufeld '87], [Weinberg '05] [Chen, Fallbacher, Mahanthappa, Ratz, AT '14] [Ivanov, Silva '15], [Ferreira et al. '17]

• is, in general, not guaranteed to exist for a given symmetry group. (It *does* exist for $G_{\rm SM}$!)

[AT '16]

Two types of groups (without mathematical rigor)

List of representations: $r_1, r_2, \ldots, r_k, r_k^*, \ldots$

Out in general : $r_i \mapsto r_j \quad \forall \text{ irreps } i, j \ (1:1)$

Criterion:

Is there an (outer) automorphism transformation that maps

$$r_i \mapsto r_i^*$$
 for all irreps i ?
No Yes
 \Rightarrow Group of "type I" \Rightarrow Group of "type II"

This tells us whether a CP transformation is possible, or not!

Do CP transformations exist for all symmetries?

Do CP transformations exist for all symmetries? General answer: No.

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

• These are **inconsistent** with the trafo $r_i \mapsto r_i^* \forall i$.

⇒ CP transformation is inconsistent with a type I symmetry. (assuming sufficient # of irreps are in the model)

There are models in which CP is violated *as a consequence* of another symmetry.

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]

The corresponding CPV phases are calculable and quantized (e.g. $\delta_{CP} = 2\pi/3, ...)$ stemming from the necessarily complex Clebsch-Gordan coefficients of the "type I" group. This has been termed "explicit geometrical" CP violation.

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14] [Branco, '15], [de Medeiros Varzielas, '15]

Do CP transformations exist for all symmetries?

On the contrary:

Semi-simple Lie groups are all of type II.

- There always exists an (outer) automorphism transformation that maps all $r \mapsto r^*$ simultaneously.
- ⇒ CP can only be violated (explicitly) if the number of rephasing degrees of freedom is less than the number of complex parameters.
 cf. e.g. [Haber, Surujon '12]

This is the case in the Standard Model.

 \overleftrightarrow This just parametrizes CPV, there is no way to predict $\delta_{\mathcal{QP}}$.

Aside: There are models with higher-order CP transformations which allow for complex couplings, yet conserve CP (groups of type II B).

[Chang, Mohapatra '01], [Chen, Fallbacher, Mahanthappa, Ratz, AT '14], [Ivanov, Silva '15]

Do type I groups occur in Nature?

• Discrete groups? \rightarrow Crystals?

Do type I groups occur in Nature?

- Discrete groups? \rightarrow Crystals?
 - \checkmark no type I point groups in 2D (SO(2)), 3D (SO(3)).
 - \checkmark no type I subgroups of SU(2).
 - X no type I subgroups of the Lorentzgroup. (Open question: Type I "spacetime crystals"? [Wiczek '12]).
 - ✓ In \ge 4D: crystals with type I point groups

[Fischer, Ratz, Torrado and Vaudrevange '12]

Do type I groups occur in Nature?

- Discrete groups? \rightarrow Crystals?
 - \checkmark no type I point groups in 2D (SO(2)), 3D (SO(3)).
 - \checkmark no type I subgroups of SU(2).
 - in type I subgroups of the Lorentzgroup. (Open question: Type I "spacetime crystals"? [Wilczek '12]).
 - ✓ In \ge 4D: crystals with type I point groups

- Discrete flavor symmetries?
 - Many models with type I groups:

 $T_7, \Delta(27), \Delta(54), \mathcal{PSL}_2(7), \dots$

e.g. [Björkeroth, Branco, Ding, de Anda, Ishimori, King, Medeiros Varzielas, Neder, Stuart et al. '15-'18] [Chen, Pérez, Ramond '14], [Krishnan, Harrison, Scott '18]

- These can originate from extra dimensions, e.g. in string theory. [Kobayashi et al. '06], [Nilles, Ratz, Vaudrevange '12]
- Semi-realistic heterotic orbifold model with $\Delta(54)$ flavor symmetry and geometrical CP violation.

[Nilles, Ratz, AT, Vaudrevange '18]

[[]Fischer, Ratz, Torrado and Vaudrevange '12]

Example toy model:

CP violation with an unbroken CP transformation

Andreas Trautner

CP Violation caused by another symmetry, 7.9.18

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

 $\operatorname{Out}(\mathfrak{su}(3)) \cong \mathbb{Z}_2$

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

Note: ${\rm Out}(\,\mathfrak{su}(3)\,)$ acts on the ${\rm T}_7 \subset {\rm SU}(3)$ subgroup as ${\rm Out}(\,{\rm T}_7\,)!$

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu} \phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2} \phi^{\dagger} \phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2}\phi^{\dagger}\phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

calculation enabled by SUSYNO [Fonseca '11]

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu} \phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2} \phi^{\dagger} \phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

calculation enabled by SUSYNO [Fonseca '11]

- VEV of the 15-plet $\langle \phi \rangle$ breaks ${
 m SU}(3) o {
 m T}_7$. [Luhn, '11], [Merle, Zwicky '11]
- $Out(\mathfrak{su}(3)) \cong \mathbb{Z}_2 \to Out(T_7) \cong \mathbb{Z}_2$; Out unbroken by VEV.

$$\operatorname{SU}(3) \rtimes \mathbb{Z}_2 \xrightarrow{\langle \phi \rangle} \operatorname{T}_7 \rtimes \mathbb{Z}_2;.$$

$\mathsf{CP} \text{ violation in } \mathbf{SU}(3) \to \mathrm{T}_7 \text{ toy model}_{_{[\operatorname{Ratz, AT '16}]}}$

Name	SU(3)	$\xrightarrow{\langle \phi \rangle}$ Name	T_7	mass
Δ	8	Z_{μ}	1_1	$m_Z^2 = 7/3 g^2 v^2$
$A\mu$	0	$\bot = W_{\mu}$	3	$m_W^2 = g^2 v^2$
		$\operatorname{Re}\sigma_0$	$\mathbf{1_0}$	$m_{\operatorname{Re}\sigma_0}^2 = 2\mu^2$
		$\lim_{n \to \infty} \sigma_0$	$\mathbf{1_0}$	$m_{\mathrm{Im}\sigma_0}^2 = 0$
d	15	σ_1	1_1	$m_{\sigma_1}^2 = -\mu^2 + \sqrt{15}\lambda_5v^2$
φ	15	τ_1	3	$m_{\tau_1}^2 = m_{\tau_1}^2(\mu, \lambda_i)$
		au	3	$m_{\tau_2}^2 = m_{\tau_2}^2(\mu, \lambda_i)$
		$ au_3$	3	$m_{\tau_3}^2 = m_{\tau_3}^2(\mu, \lambda_i)$

[Ratz, AT '16]

Name	SU(3)	$\xrightarrow{\langle \phi \rangle}$ Name	T_7	mass
4	8	Z_{μ}	1_1	$m_Z^2 = 7/3 g^2 v^2$
$\Lambda \mu$	0	$\bot = W_{\mu}$	3	$m_W^2 = g^2 v^2$
		$\operatorname{Re}\sigma_0$	$\mathbf{1_0}$	$m_{\mathrm{Re}\sigma_0}^2 = 2\mu^2$
		Im σ_0	$\mathbf{1_0}$	$m_{\mathrm{Im}\sigma_0}^2 = 0$
d	15	σ_1	$\mathbf{1_1}$	$m_{\sigma_1}^2 = -\mu^2 + \sqrt{15}\lambda_5v^2$
φ	15	τ_1	3	$m_{\tau_1}^2 = m_{\tau_1}^2(\mu, \lambda_i)$
		$ au_2$	3	$m_{\tau_2}^2 = m_{\tau_2}^2(\mu, \lambda_i)$
		$ au_3$	3	$m_{\tau_3}^2 = m_{\tau_3}^2(\mu, \lambda_i)$

The action is invariant under the $\mathbb{Z}_2 - Out$ transformation:

SU(3)	T_7
	$W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P}x) ,$
$A^{a}(x) \mapsto B^{ab} \oplus \nu A^{b}(\oplus x)$	$\sigma_0(x) \mapsto \sigma_0(\mathfrak{P} x) ,$
$H_{\mu}(x) \mapsto H = f_{\mu}^{*}(\Phi_{\mu}),$	$ \tau_i(x) \ \mapsto \ \tau_i^*(\mathfrak{P} x) \ ,$
$\varphi_i(x) \mapsto U_{ij} \varphi_j(\mathcal{F}x)$.	$Z_{\mu}(x) \mapsto -\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P}x) ,$
	$\sigma_1(x) \mapsto \sigma_1(\mathfrak{P} x)$.
physical CP 🗸	physical CP 🗡

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

 $\Rightarrow~$ The $\mathbb{Z}_2\text{-}Out$ is conserved at the level of $\mathrm{T}_7,$ but it is not interpreted as a physical CP trafo,

$$\mathrm{SU}(3) \rtimes \mathbb{Z}_2^{(\mathrm{CP})} \xrightarrow{\langle \phi \rangle} \mathrm{T}_7 \rtimes \mathbb{Z}_2^{(\mathrm{CP})}$$

- There is no other possible allowed CP transformation at the level of T_7 (type I).
- Imposing a transformation r_{T₇,i} ↔ r_{T₇,i}* enforces decoupling, g = λ_i = 0.

$\begin{array}{c} \mathsf{CP} \text{ violation in } \mathrm{SU}(3) \to \mathrm{T}_7 \text{ toy model} \\ {}_{\mathsf{Explicit crosscheck: compute decay asymmetry.} \end{array}$

$$\varepsilon_{\sigma_1 \to W W^*} := \frac{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 - \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 + \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}.$$

Explicit crosscheck: compute decay asymmetry.

$$\varepsilon_{\sigma_1 \to W W^*} := \frac{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 - \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 + \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}.$$

Contribution to $\varepsilon_{\sigma_1 \to W W^*}$ from interference terms, e.g.

corresponding to non-vanishing CP-odd basis invariants

$$\begin{split} \mathcal{I}_1 \;&=\; \left[Y_{\sigma_1 W W^*}^{\dagger}\right]_{k\ell} \, \left[Y_{\sigma_1 \tau_2 \tau_2^*}\right]_{ij} \, \left[Y_{\tau_2^* W W^*}\right]_{imk} \, \left[\left(Y_{\tau_2^* W W^*}\right)^*\right]_{jm\ell} \;, \\ \mathcal{I}_2 \;&=\; \left[Y_{\sigma_1 W W^*}^{\dagger}\right]_{k\ell} \, \left[Y_{\sigma_1 \tau_2 \tau_2^*}\right]_{ij} \, \left[Y_{\tau_2^* W W^*}\right]_{i\ell m} \, \left[\left(Y_{\tau_2^* W W^*}\right)^*\right]_{jkm} \;. \end{split}$$

- ✓ Contribution to $\varepsilon_{\sigma_1 \to W W^*}$ is proportional to Im $\mathcal{I}_{1,2} \neq 0$.
- ✓ All CP odd phases are geometrical, $I_1 = e^{2 \pi i/3} I_2$.
- ✓ $(\varepsilon_{\sigma_1 \to W W^*}) \to 0$ for $v \to 0$, i.e. CP is restored in limit of vanishing VEV.

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

$$\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \ \mapsto \ \mathfrak{P}_{\mu}^{\ \nu} W_{\nu}^*(\mathfrak{P} x) \ , \quad Z_{\mu}(x) \ \mapsto \ - \mathfrak{P}_{\mu}^{\ \nu} Z_{\nu}(\mathfrak{P} x) \ ,$$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states.

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

$$\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \mapsto \mathbb{P}_{\mu}^{\nu} W_{\nu}^*(\mathbb{P}x) , \quad Z_{\mu}(x) \mapsto -\mathbb{P}_{\mu}^{\nu} Z_{\nu}(\mathbb{P}x) ,$$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states. Physical scalars (T_7 singlets and triplets):

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} (\phi_{1} + \phi_{1}^{*}) , \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathrm{i}}{\sqrt{2}} (\phi_{1} - \phi_{1}^{*}) ,$$

$$\sigma_{1} = \phi_{2} ,$$

$$\begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} T_{2} \\ T_{3}^{*} \\ T_{1} \end{pmatrix} .$$

Andreas Trautner

CP Violation caused by another symmetry, 7.9.18

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

 $\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \mapsto \mathbb{P}_{\mu}^{\nu} W_{\nu}^*(\mathbb{P}x) , \quad Z_{\mu}(x) \mapsto -\mathbb{P}_{\mu}^{\nu} Z_{\nu}(\mathbb{P}x) ,$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states.

Possible application to strong CP problem?

· Starting point: CP conserving theory based on

 $[G_{\rm SM} \times G_{\rm F}] \rtimes {\rm CP}$.

- break $G_{\rm F} \rtimes {\rm CP} \longrightarrow {\rm Type \, I} \rtimes {\rm Out.}$
- - Main problem: finding realistic model based on Type I group allowing for outer automorphism.

Summary

- Outer automorphisms are symmetries of symetries
 (→ think of them as mappings among the irreps).
- CP is **a** special outer automorphism which maps *all* present representations to their complex conjugate.
- There are "type I" groups, they are inconsistent with CP transformations.
 ⇒ CPV (explicit/spontaneous) with quantized phases.
- Example for appearance of **type I** symmetries: potentially realistic heterotic orbifold string theories.

[Nilles, Ratz, AT, Vaudrevange '18]

Explicit toy model: type I as subgroup of type II group

gauged $SU(3) \xrightarrow{\langle \mathbf{15} \rangle} T_7$ with weak CPV but $\theta_{SU(3)} = 0$.

Thank You

CP Violation caused by another symmetry, 7.9.18

Backup slides

Andreas Trautner

CP Violation caused by another symmetry, 7.9.18

25/23

CP as a special outer automorphism

One generation of (chiral) fermion fields with gauge symmetry $[T_a, T_b] = i f_{abc} T_c$

$$\mathscr{L} = \mathrm{i}\,\overline{\Psi}\,\gamma^{\mu}\left(\partial_{\mu} - \mathrm{i}\,g\,T_{a}\,W^{a}_{\mu}\right)\Psi - \frac{1}{4}\,G^{a}_{\mu\nu}\,G^{\mu\nu,a}$$

The most general possible CP transformation:

$$\begin{split} W^a_\mu(x) \ \mapsto \ R^{ab} \ \mathcal{P}^{\,\nu}_\mu \ W^b_\nu(\mathcal{P} x) \ , \\ \Psi^i_\alpha(x) \ \mapsto \ \eta_{\rm CP} \ U^{ij} \ \mathcal{C}_{\alpha\beta} \ \Psi^{*j}_{\ \beta}(\mathcal{P} x) \ . \end{split}$$

[Grimus, Rebelo,'95]

CP as a special outer automorphism

One generation of (chiral) fermion fields with gauge symmetry $[T_a, T_b] = i f_{abc} T_c$

$$\mathscr{L} = \mathrm{i}\,\overline{\Psi}\,\gamma^{\mu}\left(\partial_{\mu} - \mathrm{i}\,g\,T_{a}\,W^{a}_{\mu}\right)\Psi - \frac{1}{4}\,G^{a}_{\mu\nu}\,G^{\mu\nu,a}$$

The most general possible CP transformation:

$$\begin{split} W^a_\mu(x) \; \mapsto \; R^{ab} \, \mathcal{P}^{\,\nu}_\mu \, W^b_\nu(\mathcal{P} x) \; , \\ \Psi^i_\alpha(x) \; \mapsto \; \eta_{\mathsf{CP}} \, U^{ij} \, \mathcal{C}_{\alpha\beta} \, \Psi^{*j}_{\ \beta}(\mathcal{P} x) \; . \end{split}$$

[Grimus, Rebelo,'95]

For this to be a conserved symmetry of the action, require:

Meaning of these equations:

- $\rm (i)~$ CP is an (outer) automorphism of the gauge group.
- (ii) CP maps representations to their complex conjugate representations. $(T_a \mapsto -T_a^T)$
- (iii) CP is an outer automorphism of the Lorentz group which maps representations to their complex conjugate representation. $(\chi_L \mapsto (\chi_L)^{\dagger})$

Type II A groups: CP violation completely analogue to well–known case: SU(N)(i.e. it depends on # of rephasing d.o.f.'s vs # complex couplings) Type II B groups: CP violation tied to certain operators

"Physical" CP transformation

Recall: e.g. complex scalar field σ , with field operator

$$\widehat{\boldsymbol{\sigma}}(x) = \int \widetilde{\mathrm{d}} p \left\{ \widehat{\boldsymbol{a}}(\vec{p}) \,\mathrm{e}^{-\mathrm{i}\,p\,x} + \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \,\mathrm{e}^{\mathrm{i}\,p\,x} \right\}$$

Physical CP transformation of the complex scalar field

$$CP : \sigma(x) \mapsto e^{i\varphi} \sigma^*(\mathfrak{P}x),$$

corresponds to

$$\operatorname{CP} : \widehat{a}(\vec{p}) \mapsto \operatorname{e}^{\operatorname{i} \varphi} \widehat{b}(-\vec{p}) \quad \text{and} \quad \widehat{b}^{\dagger}(\vec{p}) \mapsto \operatorname{e}^{\operatorname{i} \varphi} \widehat{a}^{\dagger}(-\vec{p}) .$$

Note:

"matter":
$$\widehat{m{a}}^{(\dagger)}$$
 "anti-matter": $\widehat{m{b}}^{(\dagger)}$.

Toy model details Complex scalar ϕ in T_7 -diagonal basis of SU(3): (in unitary gauge)

$$\phi = \left(v + \phi_1, \frac{\phi_2}{\sqrt{2}}, \frac{\phi_2^*}{\sqrt{2}}, \phi_4, \phi_5, \phi_6, \frac{\phi_7}{\sqrt{2}}, \frac{\phi_8}{\sqrt{2}}, \frac{\phi_9}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_7^*}{\sqrt{2}}, \frac{\phi_8^*}{\sqrt{2}}, \frac{\phi_9^*}{\sqrt{2}}\right)$$

 T_7 representations of the components:

The physical scalars are

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} (\phi_{1} + \phi_{1}^{*}) , \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathrm{i}}{\sqrt{2}} (\phi_{1} - \phi_{1}^{*}) ,$$

$$\sigma_{1} = \phi_{2} ,$$

$$\begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} T_{2} \\ \overline{T}_{3}^{*} \\ T_{1} \end{pmatrix} .$$

The physical vectors are

$$\begin{split} Z^{\mu} &=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{7} - \mathrm{i} \, A^{\mu}_{8} \right) \;, \qquad \qquad W^{\mu}_{1} \;=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{4} - \mathrm{i} \, A^{\mu}_{1} \right) \;, \\ W^{\mu}_{2} \;=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{5} - \mathrm{i} \, A^{\mu}_{2} \right) \;, \qquad \qquad W^{\mu}_{3} \;=\; \frac{\mathrm{i}}{\sqrt{2}} \left(A^{\mu}_{6} - \mathrm{i} \, A^{\mu}_{3} \right) \;. \end{split}$$

Andreas Trautner

CP Violation caused by another symmetry, 7.9.18

Toy model details

The VEV in this basis is simply

$$\langle \phi \rangle_1 = v$$
 and $\langle \phi \rangle_i = 0$ for $i = 2, \dots, 15$,

where

$$|v| = \mu \times 3\sqrt{\frac{7}{2}} \left(-7\sqrt{15}\,\lambda_1 + 14\sqrt{15}\,\lambda_2 + 20\sqrt{6}\,\lambda_4 + 13\sqrt{15}\,\lambda_5\right)^{-1/2} \,.$$

The masses of the physical states are

$$m_Z^2 = rac{7}{3} \, g^2 \, v^2$$
 and $m_W^2 = g^2 \, v^2$

$$\begin{split} m_{\mathrm{Re}\,\sigma_0}^2 \;&=\; 2\,\mu^2 \;, \qquad m_{\mathrm{Im}\,\sigma_0}^2 \;=\; 0 \;, \\ m_{\sigma_1}^2 \;&=\; -\,\mu^2 + \sqrt{15}\,\lambda_5\,v^2 \;. \end{split}$$

The massless mode is the goldstone boson of an additional ${\rm U}(1)$ symmetry of the potential. It can be avoided by either

- gauging the additional U(1),
- or breaking it softly by a cubic coupling of ϕ .

Toy model details

 T_7 invariant couplings ($\omega := e^{2\pi i/3}$)

$$Y_{\sigma_1 W W^*} \;=\; \frac{v\,g^2}{\sqrt{6}}\,\mathrm{e}^{-\pi\,\mathrm{i}/6}\,\mathrm{diag}(1,\,\omega,\,\omega^2)\;,\quad Y_{\sigma_1\tau_2\tau_2^*}\;=\; v\,y_{\sigma_1\tau_2\tau_2^*}\;\mathrm{diag}(1,\,\omega,\,\omega^2)\;,$$

$$\begin{split} \left[Y_{\tau_2^*WW^*}\right]_{121} &= \left[Y_{\tau_2^*WW^*}\right]_{232} &= \left[Y_{\tau_2^*WW^*}\right]_{313} &= v \, g^2 \, y_{\tau_2^*WW^*} \;, \\ \left[Y_{\tau_2^*WW^*}\right]_{ijk} &= 0 \qquad \text{(else)} \;. \end{split}$$

Toy model details

$$\begin{split} y_{\sigma_{1}\tau_{2}\tau_{2}^{*}} &= \frac{1}{504\sqrt{3}} \left\{ V_{21}^{2} \left[-14\sqrt{10} \left(17 + 5\sqrt{3} i \right) \lambda_{1} + 84\sqrt{30} \left(\sqrt{3} - i \right) \lambda_{2} \right. \right. \\ &\quad - 240 \left(1 + \sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(197 - 55\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 8V_{22}^{2} \left[28\sqrt{10} \left(1 - \sqrt{3} i \right) \lambda_{1} - 14\sqrt{30} i \lambda_{2} + 112\sqrt{3} i \lambda_{3} \right. \\ &\quad - \left(30 - 26\sqrt{3} i \right) \lambda_{4} + \sqrt{10} \left(20 - \sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 8V_{23}^{2} \left[28\sqrt{10} \left(1 + \sqrt{3} i \right) \lambda_{1} - 14\sqrt{30} i \lambda_{2} - 168\lambda_{3} \right. \\ &\quad + \left(6 + 65\sqrt{3} i \right) \lambda_{4} - 4\sqrt{10} \left(1 - 2\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 8V_{21}V_{22} \left[-35\sqrt{10} \left(1 - \sqrt{3} i \right) \lambda_{1} + 21\sqrt{30} \left(\sqrt{3} + i \right) \lambda_{2} \right. \\ &\quad - 56 \left(3 + \sqrt{3} i \right) \lambda_{3} + 6 \left(1 + 17\sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(67 + 19\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 4V_{21}V_{23} \left[-28\sqrt{10} \left(2 + \sqrt{3} i \right) \lambda_{1} - 42\sqrt{30} \left(\sqrt{3} + i \right) \lambda_{2} \right. \\ &\quad + 30 \left(11 + 3\sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(31 + 11\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad - 8V_{22}V_{23} \left[14\sqrt{10}\lambda_{1} - 14\sqrt{30} i \lambda_{2} \right. \\ &\quad + 10 \left(3 + 5\sqrt{3} i \right) \lambda_{4} + \sqrt{10} \left(1 - 3\sqrt{3} i \right) \lambda_{5} \right] \Big\} \end{split}$$

and

$$y_{\tau_2^*WW^*} \;=\; - \; \frac{\sqrt{2}}{3} \; \left(2 \, V_{21} + V_{22} + 2 \, V_{23} \right) \;.$$

Andreas Trautner

CP Violation caused by another symmetry, 7.9.18

CP symmetries in settings with discrete G

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator FS_u (Backup slides)

Twisted Frobenius–Schur indicator

Criterion to decide: existence of a CP outer automorphism. \curvearrowright can be probed by computing the

"twisted Frobenius–Schur indicator" FS_u

$$FS_u(\boldsymbol{r}_i) := \frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_i}(g \, u(g))$$

[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

: Character)

$$FS_u(\boldsymbol{r}_i) = \begin{cases} +1 \text{ or } -1 \quad \forall i, \Rightarrow u \text{ is good for CP,} \\ \text{different from } \pm 1, \Rightarrow u \text{ is no good for CP.} \end{cases}$$

In analogy to the Frobenius–Schur indicator $\mathrm{FS}_{\mathrm{X}}(\pmb{r}_i)=+1,-1,0 \text{ for real / pseudo-real / complex irrep.}$

Bibliography I

Bernabeu, J., Branco, G., and Gronau, M. (1986).

CP Restrictions on Quark Mass Matrices. *Phys. Lett.*, B169:243–247.

Botella, F. J. and Silva, J. P. (1995).

Jarlskog - like invariants for theories with scalars and fermions. *Phys. Rev.*, D51:3870–3875, hep-ph/9411288.

Branco, G., Gerard, J., and Grimus, W. (1984).

Geometrical T Violation. Phys. Lett., B136:383.

Branco, G. C., de Medeiros Varzielas, I., and King, S. F. (2015).

Invariant approach to CP in family symmetry models. *Phys. Rev.*, D92(3):036007, 1502.03105.

Branco, G. C., Rebelo, M. N., and Silva-Marcos, J. I. (2005).

CP-odd invariants in models with several Higgs doublets. *Phys. Lett.*, B614:187–194, hep-ph/0502118.

Buchbinder, I. L., Gitman, D. M., and Shelepin, A. L. (2002). Discrete symmetries as automorphisms of the proper Poincare group. *Int. J. Theor. Phys.*, 41:753–790, hep-th/0010035.

Chang, D., Keung, W.-Y., and Mohapatra, R. N. (2001).

Models for geometric CP violation with extra dimensions. *Phys. Lett.*, B515:431–441, hep-ph/0105177.

Bibliography II

Chang, D. and Mohapatra, R. N. (2001).

Geometric CP violation with extra dimensions. *Phys. Rev. Lett.*, 87:211601, hep-ph/0103342.

Chen, G., Pérez, M. J., and Ramond, P. (2015).

Neutrino masses, the μ -term and $\mathcal{PSL}_2(7)$. *Phys. Rev.*, D92(7):076006, 1412.6107.

Chen, M.-C., Fallbacher, M., Mahanthappa, K. T., Ratz, M., and Trautner, A. (2014).

CP Violation from Finite Groups. Nucl. Phys., B883:267–305, 1402.0507.

Criado, J. C. and Feruglio, F. (2018).

Modular Invariance Faces Precision Neutrino Data. 1807.01125.

Davidson, S. and Haber, H. E. (2005).

Basis-independent methods for the two-Higgs-doublet model. *Phys. Rev.*, D72:035004, hep-ph/0504050. [Erratum: Phys. Rev.D72,099902(2005)].

de Medeiros Varzielas, I., King, S. F., Luhn, C., and Neder, T. (2016).

CP-odd invariants for multi-Higgs models: applications with discrete symmetry. *Phys. Rev.*, D94(5):056007, 1603.06942.

Ecker, G., Grimus, W., and Neufeld, H. (1987).

A Standard Form for Generalized CP Transformations. *J.Phys.*, A20:L807.

Bibliography III

Fallbacher, M. and Trautner, A. (2015).

Symmetries of symmetries and geometrical CP violation. *Nucl. Phys.*, B894:136–160, 1502.01829.

Ferreira, P. M., Ivanov, I. P., Jiménez, E., Pasechnik, R., and Serôdio, H. (2017).

CP4 miracle: shaping Yukawa sector with CP symmetry of order four. 1711.02042.

Feruglio, F. (2017).

Are neutrino masses modular forms? 1706.08749.

Fischer, M., Ratz, M., Torrado, J., and Vaudrevange, P. K. (2013).

Classification of symmetric toroidal orbifolds. *JHEP*, 1301:084, 1209.3906.

Fonseca, R. M. (2012).

Calculating the renormalisation group equations of a SUSY model with Susyno. *Comput. Phys. Commun.*, 183:2298–2306, 1106.5016.

GAP (2012).

GAP – Groups, Algorithms, and Programming, Version 4.5.5. The GAP Group.

Grimus, W. and Rebelo, M. (1997).

Automorphisms in gauge theories and the definition of CP and P. *Phys. Rept.*, 281:239–308, hep-ph/9506272.

Bibliography IV

Gronau, M., Kfir, A., and Loewy, R. (1986).

Basis Independent Tests of CP Violation in Fermion Mass Matrices. *Phys. Rev. Lett.*, 56:1538.

Gunion, J. F. and Haber, H. E. (2005).

Conditions for CP-violation in the general two-Higgs-doublet model. *Phys. Rev.*, D72:095002, hep-ph/0506227.

Haber, H. E. and Surujon, Z. (2012).

A Group-theoretic Condition for Spontaneous CP Violation. *Phys. Rev.*, D86:075007, 1201.1730.

Holthausen, M., Lindner, M., and Schmidt, M. A. (2013).

CP and Discrete Flavour Symmetries. JHEP, 1304:122, 1211.6953.

Ivanov, I. P. and Silva, J. P. (2015).

A CP-conserving multi-Higgs model without real basis. 1512.09276.

Jarlskog, C. (1985).

Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Violation.

Phys. Rev. Lett., 55:1039.

Kobayashi, T., Nilles, H. P., Plöger, F., Raby, S., and Ratz, M. (2007).

Stringy origin of non-Abelian discrete flavor symmetries. Nucl. Phys., B768:135–156, hep-ph/0611020.

Bibliography V

Krishnan, R., Harrison, P. F., and Scott, W. G. (2018).

Fully Constrained Majorana Neutrino Mass Matrices Using $\Sigma(72 \times 3)$. Eur. Phys. J., C78(1):74, 1801.10197.

Lavoura, L. and Silva, J. P. (1994).

Fundamental CP violating quantities in a SU(2) x U(1) model with many Higgs doublets. Phys. Rev., D50:4619-4624, hep-ph/9404276.

Luhn, C. (2011).

Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian's approach. JHEP. 1103:108. 1101.2417.

Merle, A. and Zwicky, R. (2012).

Explicit and spontaneous breaking of SU(3) into its finite subgroups. JHEP, 1202:128, 1110,4891,

Nishi, C. C. (2006),

CP violation conditions in N-Higgs-doublet potentials. Phys. Rev., D74:036003, hep-ph/0605153, [Erratum: Phys. Rev.D76,119901(2007)].

Olguin-Trejo, Y., Perez-Martinez, R., and Ramos-Sanchez, S. (2018). Charting the flavor landscape of MSSM-like Abelian heterotic orbifolds. 1808.06622.

Trautner, A. (2016).

CP and other Symmetries of Symmetries. PhD thesis, Munich, Tech, U., Universe, 1608.05240.

Bibliography VI

Weinberg, S. (1995).

The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press. 609 p.

	-	
	_	

Wilczek, F. (2012).

Quantum Time Crystals.

Phys. Rev. Lett., 109:160401, 1202.2539.