The foreground effect on the J-factor estimation^{[arXiv:1608.01749],} [arXiv:1706.05481] of dwarf spheroidal galaxies

Shunichi Horigome (Kavli IPMU, The University of Tokyo)

(Collaborate with Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohey Hayashi)

Abstract:

> Indirect detection is one of the detection methods of dark matter (DM), where we observe signal flax of the DM annihilation from astronomical objects. In particular, dwarf spheroidal galaxies (dSphs) are ideal target of detection, whose DM mass distribution is estimated by stellar kinematics. However various systematical uncertainties remain. > We focused on foreground contamination error and constructed a new method which reduces the effect of contamination by data-driven way. We validated our method with using the mock observational data of the Prime Focus Spectrograph (PFS). Using this method, we calculate sensitivity without foreground contamination effect for the future observations by the **Cherenkov Telescope Array (CTA)**.

Introduction of dark matter (DM) indirect detection:

3. Our Analysis Method and Demonstration:

- target: Weakly Interacted Massive Particles (WIMPs)
 - Attracting candidate, weakly interact with SM particles
- Detection methods:
 - Collider/Direct Detections ... Energy range $E \leq \text{TeV}$...
 - Indirect detection (ID) ... DM DM $\rightarrow \gamma \gamma$, $E \gtrsim \text{TeV}$!

$$\Phi(E,\Delta\Omega) = \underbrace{\left[\frac{\langle \sigma v \rangle}{8\pi m_{\rm DM}^2} \sum_f b_f \left(\frac{dN_{\gamma}}{dE}\right)_f\right]}_{\text{particle physics factor}} \times \underbrace{\left[\int_{\Delta\Omega} d\Omega \int_{l.o.s} dl \rho^2(l,\Omega)\right]}_{\text{astrophysical factor}(\equiv J)}$$

- Large J-factor? ... dwarf spheroidal galaxies (dSphs)
 - Near, DM-dominant, and noise-free!

2. The uncertainty of the J-factor:

How to estiamte the *J*-factor of dSphs We can know $\rho_{\rm DM}(r)$ by the observation of stellar motion, because the member stars memb of dSphs go around DM mass $\rho_{\rm DM}(r)$

- **Naïve cut:** color-magnitude, velocity, surface gravity lacksquare
- **Likelihood analysis:** includes both of member and FG lacksquare

 $\mathcal{L} = \left[(sf_{\text{Mem}}(v_i, R_i) + (1 - s)f_{\text{FG}}(v_i, R_i)) \right]$ s: total contamination rate

 $f_{Mem/FG}$: phase-space distribution function of the dSph/FG stars, defined by Gaussian:

 $f_{\text{Mem}}(v, R) = 2\pi R \Sigma_*(R) C_{\text{Mem}} \mathcal{G}[v; v_{\text{Mem}}, \sigma_{l.o.s}],$ $f_{\rm FG}(v,R) = 2\pi R C_{\rm FG} \mathcal{G}[v;v_{\rm FG},\sigma_{\rm FG}]$

- $v_{\rm FG}$, $\sigma_{\rm FG}$: determined by the observation of the control region (Fig. 3).
- **Demonstration:** we create mock data of the future observation by the Prime Focus Spectrograph (PFS).
 - Mock distribution has similar properties to the original dSphs,

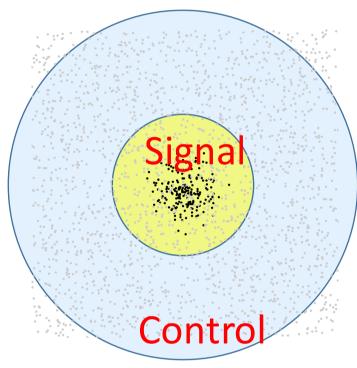


Fig. 3 Control / Signal regions

(dSphs are DM dominant, Fig. 1). Observables of stellar distribution: Fig.1 image of ID $\Sigma_*(R), \sigma_{los}^2(R)$ (2D density, velocity dispersion)

Stellar kinematics ... Jeans equation:

$$\frac{1}{\nu_*(r)} \frac{\partial(\nu_*(r)\sigma_r^2(r))}{\partial r} + \frac{2\beta_{\mathrm{ani}}\sigma_r^2(r)}{r} = -\frac{GM(r)}{r^2}$$
$$\to \sigma_r^2(r) = \frac{1}{\nu_*(r)} \int_r^\infty \nu_*(r') \left(\frac{r'}{r}\right) \frac{GM(r')}{r'^2} dr'$$

M(r): enclosed mass, $v_*(r)$: 3D density $\sigma_r^2(r)$: intrinsic dispersion $\xrightarrow{}_{\text{pro}j} \sigma_{l.o.s}^2(R)$ (dSph + Foreground)

- Systematic errors in the estimation of $\Sigma_*(R)$, $\sigma_{l.o.s}^2(R)$ Seeds of systematical error:
 - Non-sphericity, radial anisotropy, foreground (FG) contamination etc.

based on the inversion formula of the distribution:

 $\nu(r), \Phi(r) \xrightarrow{\text{inversion}} f_{\text{Mem}}(\mathbf{x}, \mathbf{v}) \to (\text{mock data})$

4. Results of demonstration and Summary:

J-factor estimation of ultra-faint dSphs (UFDs) (Fig. 4): 100 % contaminated (green), 5 % (orange) and ours (blue) Even 5% contamination affected the J-factor to deviated from the input (see UMall) but our method reproduce the true J-factor value for all of four dSphs

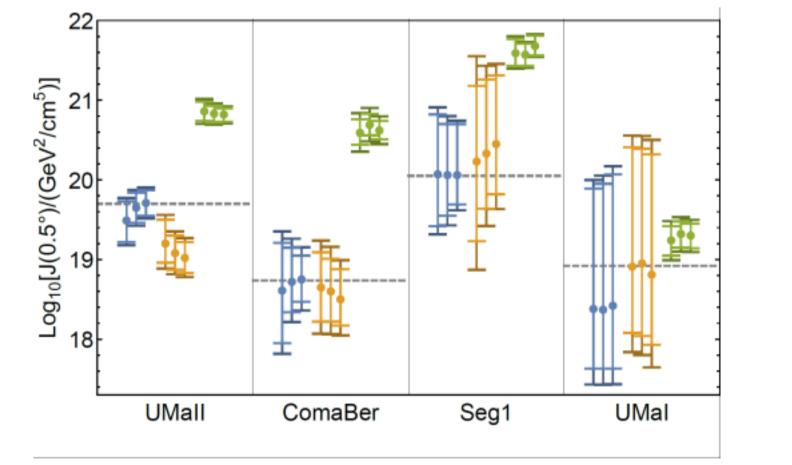
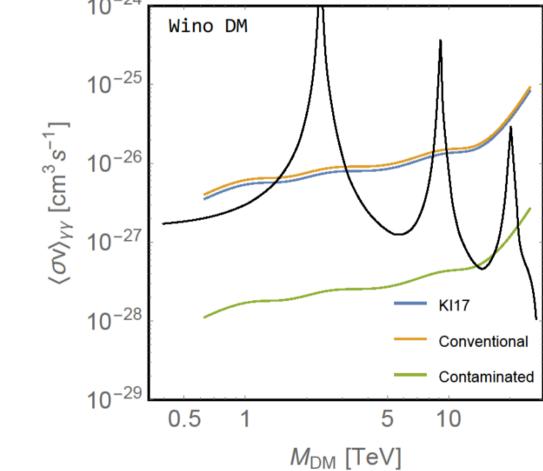



Fig. 4 Demonstration of J-factor estiamtion

← The Milky way stars overlap target dSphs so that the observed image is contaminated (Fig. 2).

dSph

Foreground

Fig. 2 Foreground contamination

 \rightarrow Careful treatment of FG contamination is required to obtain accurate DM distribution and the conservative sensitivity of ID. If we over-estimate the DM mass accidentally, it leads too severe exclusion of parameter space of DM models.

(i) MW picture only for the illustration (our actual targets are dSph but too faint to look)

Fig. 5 Sensitivity lines of the Wino DM

Sensitivity lines (Fig. 5)

(- - - : input)

- Considering Wino DM (typical mass $M_{\widetilde{W}} = 2.9 \text{ TeV}$) and 50 h observation of the four UFDs, utilizing the **Cherenkov Telescope Array (CTA)** Over-exclusion in the contaminated case (green)
- Our result (blue) is guaranteed to lead more accurate result (without systematical error of FG contamination)

Future work: other errors (anisotropy, non-sphericity...), update J-factor values by the present observation

[arXiv:1608.01749], **Precise Estimation of Dark Matter Distribution** [arXiv:1706.05481] for Indirect Detection of Dark Matter

Shunichi Horigome (Kavli IPMU, The University of Tokyo)

(Collaborate with Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohey Hayashi)

Abstract:

- > Indirect detection is one of the detection methods of dark matter (DM), whose sensitivity reaches to TeV DM. The amount of signal flax of the detection depends on the DM distribution of the target astronomical object. This distribution is estimated by stellar kinematics, but various systematic uncertainties are not taken into account.
- > For precise estimation, we focused on the contamination of the foreground stars and constructed the method which reduces the effect of contamination by data-driven way. We validated our method, using the mock observational data of the Prime Focus Spectrograph (PFS). Using this method, we calculate sensitivity without foreground contamination effect for the future observations by the Cherenkov Telescope Array (CTA).

Introduction of dark matter (DM) indirect detection:

3. Analysis Method:

- target: Weakly Interacted Massive Particles (WIMPs)
 - Attracting candidate, weakly interact with SM particles
- Detection methods:
 - Collider/Direct Detections ... Energy range $E \leq \text{TeV}$... - Indirect detection (ID) ... DM DM $\rightarrow \gamma \gamma$, $E \gtrsim \text{TeV}$!

Large J-factor? ... dwarf spheroidal galaxies (dSphs)

- Near, DM-dominant, and noise-free!

- **2.** The uncertainty of the J-factor:
- How to estiamte the *J*-factor of dSphs
 - Two observables of dSph member star: (v, R)
 - (v,R) distribution: described by stellar number density $v_*(r)$ and velocity dispersion $\sigma_{los}^2(r)$.

- **Naïve cut:** color-magnitude, velocity, surface gravity ullet
- Likelihood analysis: with foreground contamination lacksquare

 $\mathcal{L} = \left[(sf_{\text{Mem}}(v_i, R_i) + (1 - s)f_{\text{FG}}(v_i, R_i)) \right]$

where the parameter s is total contamination rate, $f_{Mem/FG}$ denotes the phase-space distribution function of the dSph/foreground stars, defined by Gaussian:

 $f_{\text{Mem}}(v, R) = 2\pi R \Sigma_*(R) C_{\text{Mem}} \mathcal{G}[v; v_{\text{Mem}}, \sigma_{l.o.s}],$ $f_{\rm FG}(v,R) = 2\pi R C_{\rm FG} \mathcal{G}[v;v_{\rm FG},\sigma_{\rm FG}]$

- $v_{\rm FG}$, $\sigma_{\rm FG}$: determined by the observation of the control region (Fig. 2).
- Mock construction: for demonstration - Considering the future observation of
 - the Prime Focus Spectrograph (PFS)
 - Create mock data having similar properties to the original dSphs,



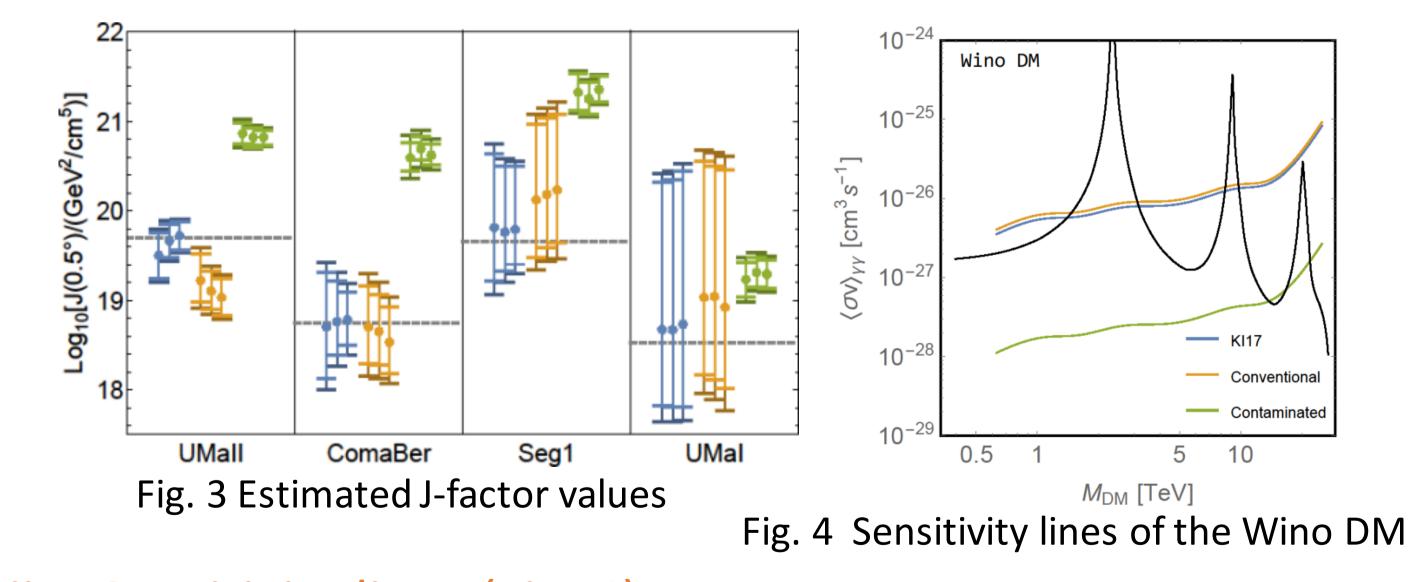
Fig. 2 Control / Signal regions

They are related by the gravitational potential $\Phi(r)$: $\nu_*(r), \sigma_{l.o.s}^2(r) \xleftarrow{\text{kinematics}} \Phi(r) \longrightarrow \rho_{\text{DM}}(r) \rightarrow J!$

Stellar kinematics ... Jeans equation:

$$\frac{1}{\nu_*(r)} \frac{\partial(\nu_*(r)\sigma_r^2(r))}{\partial r} + \frac{2\beta_{\mathrm{ani}}\sigma_r^2(r)}{r} = -\frac{GM(r)}{r^2}$$
$$\to \sigma_r^2(r) = \frac{1}{\nu_*(r)} \int_r^\infty \nu_*(r') \left(\frac{r'}{r}\right) \frac{GM(r')}{r'^2} dr'$$

M(r): enclosed mass of the DM halo $\sigma_r^2(r)$: intrinsic dispersion $\xrightarrow{\text{pro}i} \sigma_{l.o.s}^2(R)$ Observed image (dSph + Foreground)


- Parametrization of the distributions
 - $v_*(r)$... Plummer model (naïve model)
 - $\rho_{\rm DM}(r)$... NFW model (general model)
- Observation of $v_*(r)$, $\sigma_{l.o.s}^2(r)$ - obtained from photometric and spectroscopic observations

based on the inversion formula of the distribution:

 $\nu(r), \Phi(r) \xrightarrow{\text{inversion}} f_{\text{Mem}}(\mathbf{x}, \mathbf{v}) \to (\text{mock data})$

4. Results and Summary:

J-factor estimation of ultra-faint dSphs (UFDs) (Fig. 3): 100 % contaminated (green), 5 % (orange) and ours (blue) Even 5% contamination affected the result to deviated from the input but our method successfully reproduce it

- Systematic errors: Non-sphericity, radial anisotropy, foreground contamination (dominant) etc.

Foreground

Fig. 1 Foreground contamination

dSph

← The Milky way halo stars overlap a target dSph so that the observed image is contaminated (Fig. 1).

 \rightarrow Careful treatment is required to obtain accurate DM distribution and the conservative sensitivity of the ID.

ii. Sensitivity lines (Fig. 4)

- Assuming Wino DM (typical mass $M_{\tilde{w}} = 2.9$ TeV)
- 50 hours observation of the four UFDs, utilizing the **Cherenkov Telescope Array (CTA)**
- Over-exclusion in the contaminated case (green)
- Conventional way lead consistent sensitivity to ours, but Our result is guaranteed to lead accurate sensitivity line (blue)

The ID will be a more reliable method for >TeV DM search. Future tasks: other errors (anisotropy. non-sphericity...)

Precise Estimation of an Astrophysical Factor [arXiv:1608.01749], in Dark Matter Indirect Detection [arXiv:1706.05481]

Shunichi Horigome (Kavli IPMU, The University of Tokyo)

(Collaborate with Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohey Hayashi)

Abstract:

- > Indirect detection is a promising method because of its sensitivity for TeV-range dark matter (e.g. WIMP).
- > Unfortunately, predicted amount of the signal flux has error because of **uncertainties of DM distribution**.
- > For precise estimation, we considered the contamination of the foreground stars, driven by data in control region.
- > Our analysis successfully reproduce the dark matter profile of generated mock stellar data based on the **PFS**.
- > Utilizing the results, we reported the most conservative sensitivity of future telescopes, such as CTA.

1. Introduction – gamma-ray flux from dSph

- Dark Matter (DM)
- > Weakly Interacted Massive Particle (WIMP) - attracting candidate, $M_{WIMP} \sim O(1)$ Detection methods:

2. The uncertainty of DM distribution Stellar kinematics ... Jeans equation:

- Collider/Direct Detections <TeV.
- Indirect detection (ID) utilizing DMDM $\rightarrow \gamma\gamma$

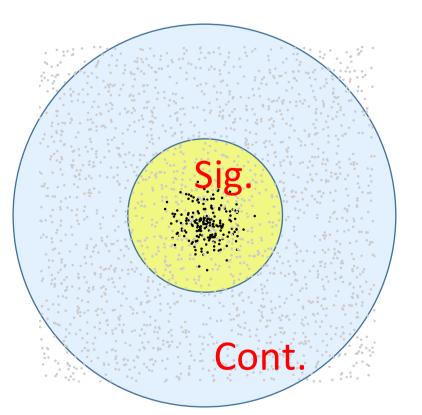
$$\Phi(E,\Delta\Omega) = \underbrace{\left[\frac{\langle \sigma v \rangle}{8\pi m_{\rm DM}^2} \sum_f b_f \left(\frac{dN_{\gamma}}{dE}\right)_f\right]}_{\text{particle physics factor}} \times \underbrace{\left[\int_{\Delta\Omega} d\Omega \int_{l.o.s} dl \rho^2(l,\Omega)\right]}_{\text{astrophysical factor}(\equiv J)}$$

- Promising target ... dwarf spheroidal galaxies (dSphs)
 - DM-dominant, and noise-free
 - -> DM distribution $\rho_{\rm DM}$ in dSph?

$\frac{1}{\nu_*(r)} \frac{\partial(\nu_*(r)\sigma_r^2(r))}{\partial r} + \frac{2\beta_{\mathrm{ani}}\sigma_r^2(r)}{r} = -\frac{GM(r)}{r^2}$ $\rightarrow \sigma_r^2(r) = \frac{1}{\nu_*(r)} \int_r^\infty \nu_*(r') \left(\frac{r'}{r}\right) \frac{GM(r')}{r'^2} dr'$ $\nu_*(r) \dots \text{Plummer model}$ $M(r) = \int_0^r dr \ 4\pi r^2 \ \rho_{DM}(r) \dots \text{NFW model}$ (general model)

 σ_r^2 is projected to the velocity dispersion along with the line-of-site $\sigma_{l.o.s}^2$, obtained by the spectroscopic observation. However there are some seeds of its errors. The most dominant one is the foreground contamination, where the Milky way halo stars overlap a target dSph so that the observed image is contaminated by halo

Methods:

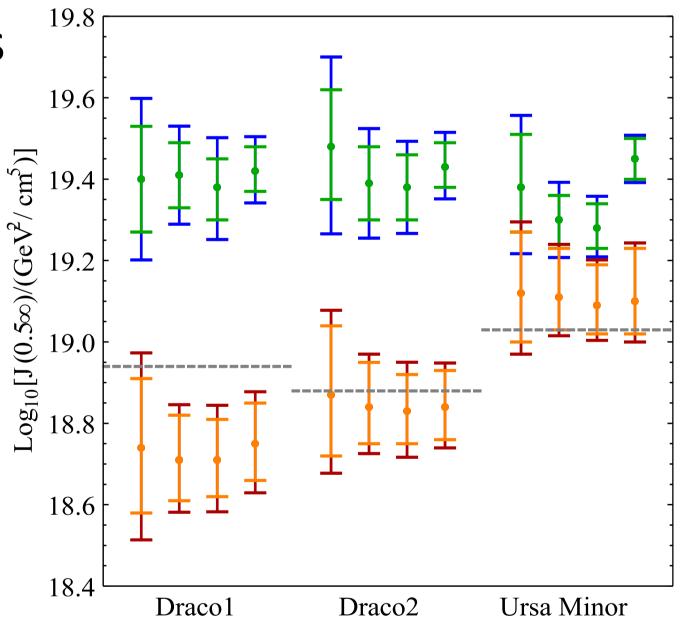

We constructed a likelihood function to adopt the foreground contamination:

 $\mathcal{L} = \prod_{i} (sf_{\text{Mem}}(v_i, R_i) + (1 - s)f_{\text{FG}}(v_i, R_i))$

where s is a total contamination rate and $f_{\rm Mem/FG}$ denotes the phase-space distribution function of the dSph/foreground stars, defined by

 $f_{\text{Mem}}(v, R) = 2\pi R \Sigma_*(R) C_{\text{Mem}} \mathcal{G}[v; v_{\text{Mem}}, \sigma_{l.o.s}],$ $f_{\text{FG}}(v, R) = 2\pi R C_{\text{FG}} \mathcal{G}[v; v_{\text{FG}}, \sigma_{\text{FG}}]$

Before the likelihood analysis, we imposed naïve cuts (color-magnitude, velocity and surface gravity). The foreground distribution is estimated by the control region around the signal region. In order to demonstrate our analysis, we create mock data having similar properties to the original dSph, considering the future observation of the Prime Focus Spectrograph (PFS).


Result: J-factor and sensitivities Fig. 1 shows the estimated J-factor values.

stars.

In the contaminated analysis estimated J-factor values were overestimated.

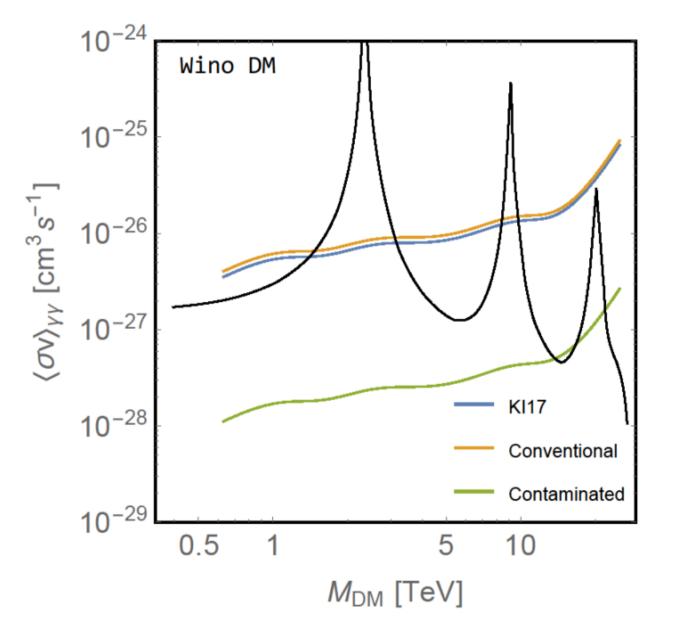

In contrast our analysis successfully reproduced the source J-factor values.

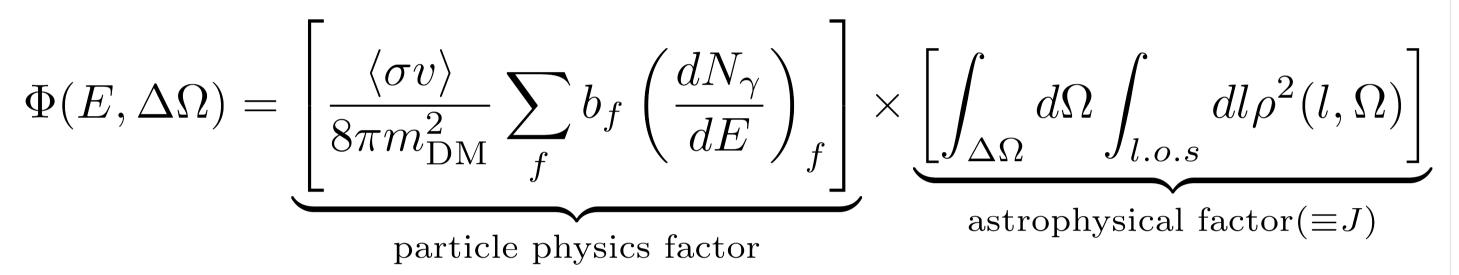
Fig.2 shows the estimated sensitivity lines of future telescopes, CTA. Our result leads more conservative sensitivity than conventional ways. It is important because it avoid too drastic exclusion of the parameter space.

Foreground

dSph + Foreground

Precise Estimation of an Astrophysical Factor [arXiv:1608.01749], in Dark Matter Indirect Detection [arXiv:1706.05481]

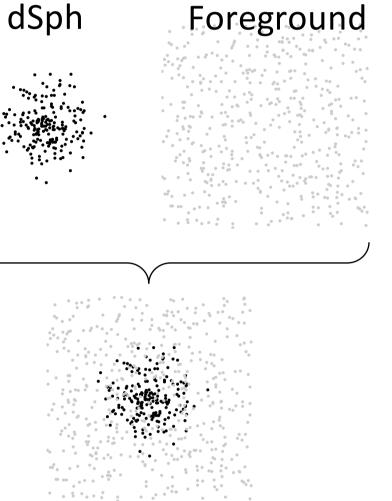
Shunichi Horigome (Kavli IPMU, The University of Tokyo)


(Collaborate with Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohey Hayashi)

Abstract:

- > Indirect detection is a promising method because of its sensitivity for TeV-range dark matter (e.g. WIMP).
- > Unfortunately, predicted amount of the signal flux has error because of the large uncertainty of DM distribution.
- > For precise estimation, we considered the contamination of the foreground stars, driven by data in control region.
- > Our analysis successfully reproduce the dark matter profile of generated mock stellar data based on the PFS.
- > Utilizing the results, we reported the most conservative sensitivity of future telescopes, such as CTA.

1. Introduction – Signal flux The identification of dark matter (DM) is a important task in particle physics and cosmology. Weakly Interacted Massive Particle (WIMP) is one of the most attracting candidates, who has TeV-scale mass. Unfortunately, present collider experiments and direct detections are hard to reach >TeV. Indirect detection (ID) is another detection method, utilizing the DM annihilation into gamma-ray. The amount of flux is given by


2. The uncertainty of DM distribution The DM distribution or the gravitational potential of the dSphs can be obtained by inversion of their stellar dynamics, which is ordered by the spherical Jeans equation:

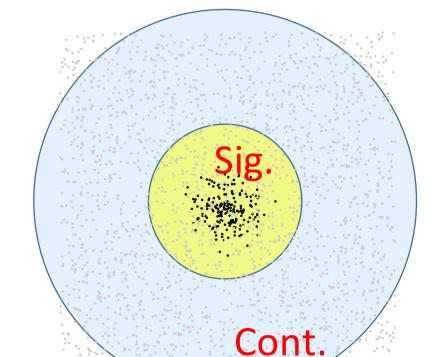
The most promising targets of the ID are dwarf spheroidal galaxies (dSphs), considered to be DM-rich and noise-free objects. Thus we need the information of their DM distribution.

$$\frac{1}{\nu_*(r)} \frac{\partial(\nu_*(r)\sigma_r^2(r))}{\partial r} + \frac{2\beta_{\mathrm{ani}}\sigma_r^2(r)}{r} = -\frac{GM(r)}{r^2}$$

where v_* and M(r) is parameterized by the Plummer model and the NFW model. The velocity dispersion σ_r^2 is obtained by the spectroscopic observation, PFS for example. However there are some seeds of its errors. The most dominant one is the foreground contamination, where the Milky way halo stars overlap a target dSph so that the observed image is contaminated by halo stars.

dSph + Foreground

Methods:


We constructed a likelihood function to adopt the foreground contamination:

 $\mathcal{L} = \prod_{i} (sf_{\text{Mem}}(v_i, R_i) + (1 - s)f_{\text{FG}}(v_i, R_i))$

where s is a total contamination rate and $f_{\rm Mem/FG}$ denotes the phase-space distribution function of the dSph/foreground stars, defined by

 $f_{\text{Mem}}(v, R) = 2\pi R \Sigma_*(R) C_{\text{Mem}} \mathcal{G}[v; v_{\text{Mem}}, \sigma_{l.o.s}],$ $f_{\text{FG}}(v, R) = 2\pi R C_{\text{FG}} \mathcal{G}[v; v_{\text{FG}}, \sigma_{\text{FG}}]$

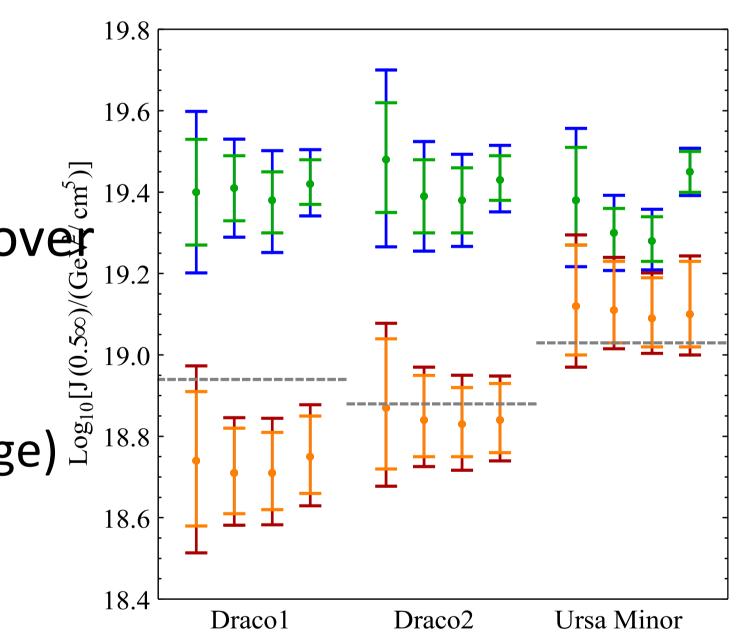
Before the likelihood analysis, we imposed naïve cuts (color-magnitude, velocity and surface gravity). The foreground distribution is estimated by the control region

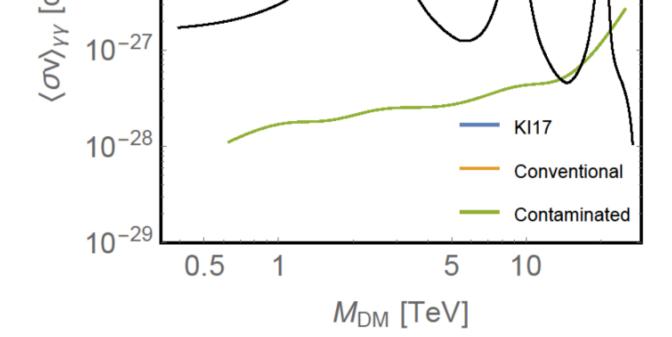
Result:

- J-factor estimation (Fig. 1)
- Contamination leaded the over estimation (green)
- Our analysis successfully
 reproduced the input (orange)

Sensitivity (Fig. 2)

- Wino DM case
- 50 hours observation of four ultra-faint dSphs utilizing Cherenkov Telescope Array (CTA)-24
- > Too aggressive sensitivity (green)
- Our result leaded the most conservative sensitivity (blue)




Fig.1 Estimated J-factor values

around the signal region.

In order to demonstrate our analysis, we create mock data having similar properties to the original dSph.

-> avoid over exclusion

Wino DM

Fig.2 Sensitivity lines of the Wino DM

Precise Estimation of an Astrophysical Factor [arXiv:1608.01749], in Dark Matter Indirect Detection [arXiv:1706.05481]

Shunichi Horigome (Kavli IPMU, The University of Tokyo)

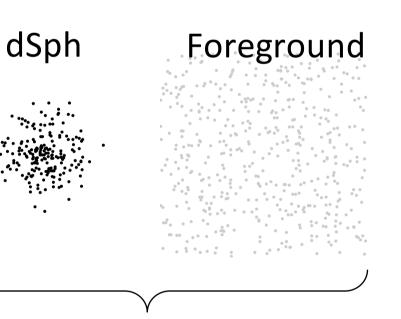
(Collaborate with Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohey Hayashi)

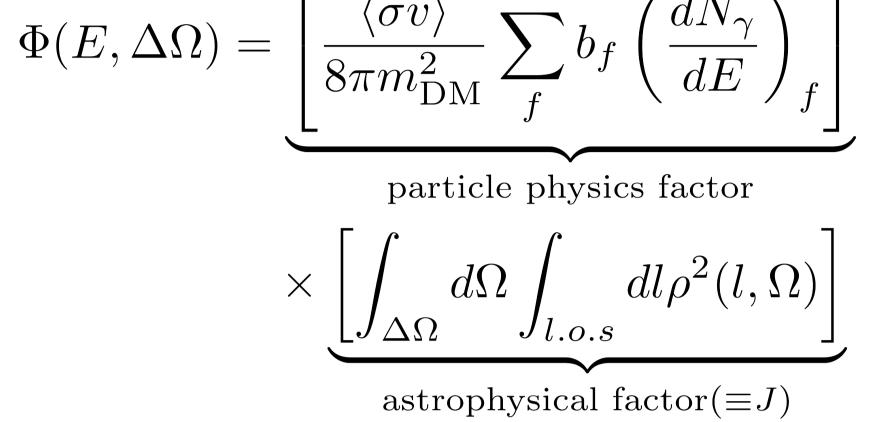
Abstruct:

- Indirect detection is one of the useful methods to find dark matter (DM), where we detect gamma-ray flux coming from an astrophysical object.
- However, predicted amount of the flux has significant error because of the large uncertainty of DM distribution.
- For precise estimation, we considered contamination of the foreground stars.
- Our analysis successfully reproduce the dark matter profile of generated mock stellar data based on the PFS.

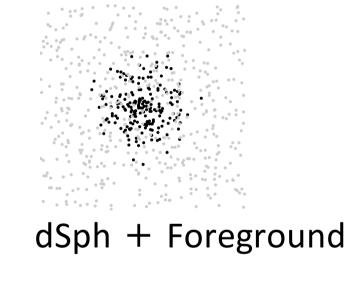
1. Introduction

DM search is one of the most important topics to research the BSM. Unfortunately, collider experiments and direct detections have not reported the significant DM signal. Indirect detection is another DM detection method, where we aim to detect the gamma-ray signal yielded by the annihilation of the DM. The amount of the flux is calculated by:


We also estimate the detection sensitivity utilizing future telescopes, such as CTA.

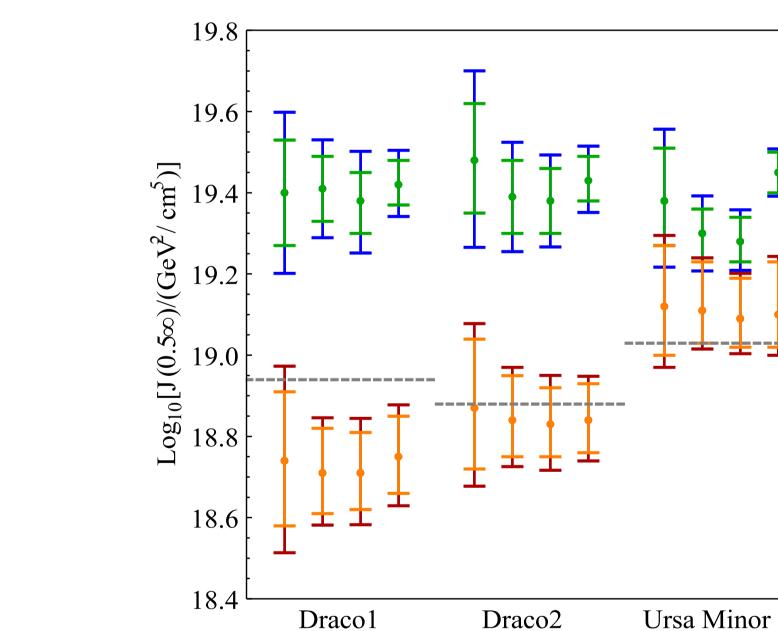

J-factor estimation

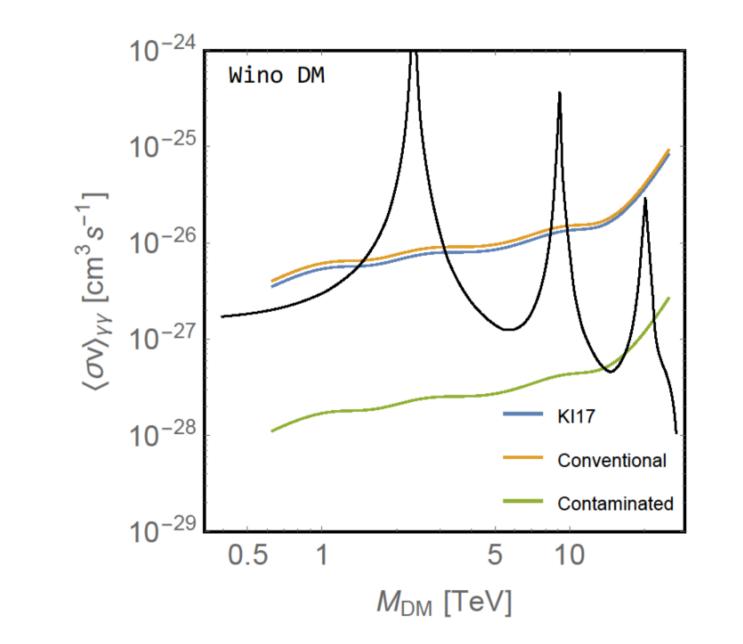
We could determine the J-factor by inversely solving the kinematics of dSph member stars. The kinematics is ordered by the Jeans equation:


 $\frac{1}{\nu_*(r)} \frac{\partial(\nu_*(r)\sigma_r^2(r))}{\partial r} + \frac{2\beta(r)_{\mathrm{ani}}\sigma_r^2(r)}{r} = -\frac{GM(r)}{r^2}$

whose velocity distribution can be observed by the spectroscopic observation, utilizing PFS for example. However there are some seeds of its errors. The most dominant one is the foreground contamination, where the Milky way halo overlap a target dSph so that the observed image is contaminated by halo stars.

Dwarf spheroidal galaxies (dSphs), which considered to be DM rich objects, are promising targets.


Methods:


We constructed a stellar distribution model to adopt this effect:

 $\mathcal{L} = \prod_{i} (sf_{\text{Mem}}(v_i, R_i) + (1 - s)f_{\text{FG}}(v_i, R_i))$

where f_men/FG denotes the phase-space distribution function of the dSph/foreground stars and parameter S is the fraction of total member star.

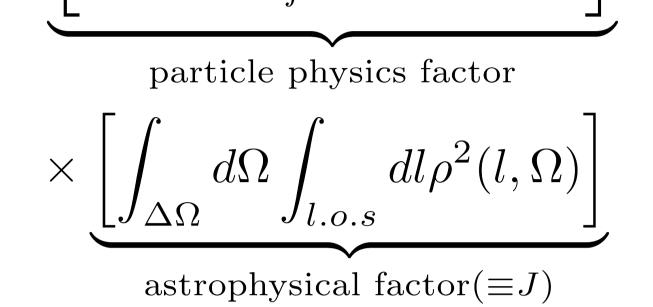
In order to demonstrate our analysis, we create mock data having similar properties to the original dSph.

Result (restriction)

hoge

Conclusion

Precise Estimation of Dark Matter Distribution in dwarf spheroidal galaxies for Indirect Detection Shunichi Horigome [arXiv:XXXXXXX], [arXiv:YYYYYYY] (Collaborate with Koji Ichikawa, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohey Hayashi)


Abstruct:

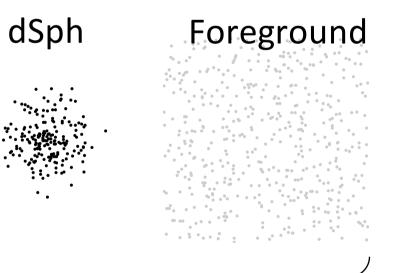
Indirect detection is one of the useful methods to find dark matter (DM), where we detect gamma-ray flux coming from an astrophysical object. However, predicted amount of the flux has significant error because of the large uncertainty of DM distribution. For precise estimation, we took into account contamination of the foreground stars. Our analysis successfully reproduce the dark matter profile of generated mock stellar data based on the PFS. We also estimate the detection sensitivity utilizing future telescopes, such as CTA.

1. Introduction

DM search is one of the most important topics to research the BSM. Unfortunately, collider experiments and direct detections have not reported the significant DM signal. Indirect detection is another DM detection method, where we aim to detect the gamma-ray signal yielded by the annihilation of the DM. The amount of the flux is calculated by:

$$\Phi(E,\Delta\Omega) = \left| \frac{\langle \sigma v \rangle}{8\pi m_{\rm DM}^2} \sum_f b_f \left(\frac{dN_{\gamma}}{dE} \right)_f \right|$$

Dwarf spheroidal galaxies (dSphs), which considered to be DM rich objects, are promising targets.


$$\mathcal{L} = \prod_{i} (sf_{\text{Mem}}(v_i, R_i) + (1 - s)f_{\text{FG}}(v_i, R_i))$$

Statistical

We constructed a stellar distribution model to adopt this effect:

J-factor estimation

We could determine the J-factor by inversely solving the kinematics of dSph member stars, whose velocity distribution can be observed by the spectroscopic observation, utilizing PFS for example. However there are some seeds of its errors. The most dominant one is the foreground contamination, where the Milky way halo overlap a target dSph so that the observed image is contaminated by halo stars.

dSph + Foreground

hoge Result (restriction)

hoge

Conclusion