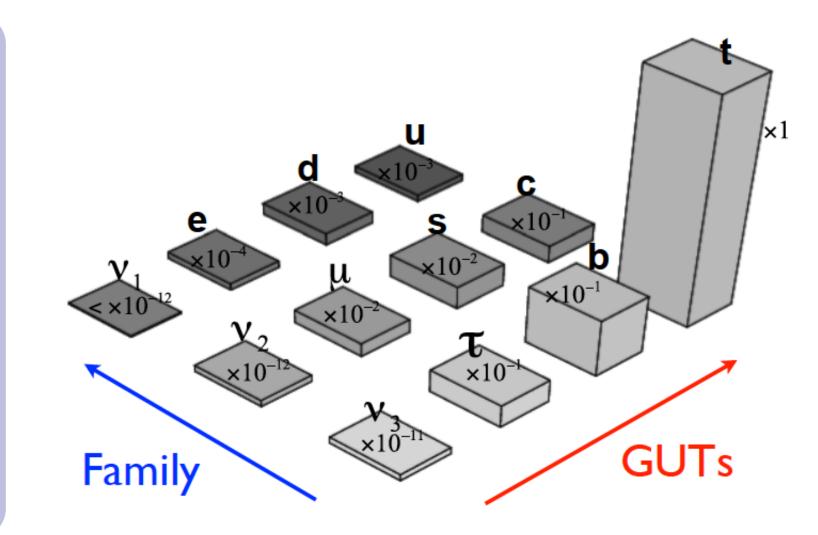
$SO(10) \times S_4$ Grand Unified Theory of flavour elusives and Leptogenesis Southampton arXiv:1710.03229

Francisco J. de Anda, Stephen F. King, Elena Perdomo* *e.perdomo-mendez@soton.ac.uk

Motivation

Flavour problem


Origin of the three families of quarks and leptons. Very hierarchical charged fermion masses, small and hierarchical quark mixing, small neutrino masses and large lepton mixing.

Family symmetry

A non-Abelian discrete symmetry imposes constraints on the Yukawa couplings and reproduces precise predictions for masses and mixing. S_4 enforces CSD(2).

Grand Unified Theory

Unifies fermions within each family and reproduces an universal mass matrix structure, predicting relationships between quark and lepton Yukawa matrices.

Unified model of flavour

Seesaw mechanism

- We present a model with quarks and leptons unified in a single ψ representation of $SO(10) \times S_4$.
- The essential superfields are given in the table below. We only allow small Higgs representations 10, 16 and 45.

Representation Field $S_4 SO(10) \mathbb{Z}_4^R$ 3' 16 1 Quarks and leptons Ψ $H_{10}^{u,d}$ 10 0 Break electroweak symmetry $\begin{array}{ccccc} H_{\overline{16},16} & 1 & \overline{16} \\ H_{45}^{X,Y,W,Z} & 1 & 45 \\ H_{45}^{B-L} & 1 & 45 \end{array}$ 0 Break SO(10) and give RH Majorana masses 45 0 Separate quarks and lepton masses 2 Gives DT splitting via DW mechanism 45 3' 0 Acquire CSD(2) vacuum alignments ϕ_i 1

• The discrete symmetry \mathbb{Z}_4^R is broken at the GUT scale by the H_{45}^{B-L} VEV to \mathbb{Z}_2^R , the usual *R* parity in the MSSM.

CSD(2) flavon vacuum alignments

The right-handed neutrino (RHN) mass M^R has the same structure as Y^{ν} . The light neutrino mass matrix is obtained by the **type-I seesaw mechanism** [3,4] and will also have the CSD(2) structure

$$m^{\nu} = \mu_{1}^{\nu} \begin{pmatrix} 1 \ 2 \ 0 \\ 2 \ 4 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} + \mu_{2}^{\nu} \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \end{pmatrix} + \mu_{3}^{\nu} \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \end{pmatrix}$$

The parameters μ_i are given in terms of the parameters y_i^{ν} and M_i^{R} simply by

$$\mu_i = v_u^2 \frac{(y_i^v)^2}{M_i^R}$$

The flavons yield a light neutrino mass matrix m^{v} , where the normal hierarchy $m_1 \ll m_2 \ll m_3$ after seesaw is due to the very hierarchical RHN masses.

Numerical fit

The model accurately fits all available quark and lepton data, with 15 input parameters to fit 19 data points and a reduced $\chi_{\nu}^2 \approx 3$. It predicts **normal neutrino hierarchy** and a *CP* phase δ^l

The Yukawa parameters are given a dynamical origin

 $\mathscr{L} \sim \frac{1}{\lambda} \phi H \bar{\psi} \psi \rightarrow \frac{\langle \phi \rangle}{\lambda} H \bar{\psi} \psi \rightarrow y H \bar{\psi} \psi,$

where the flavon fields break S_4 with the CSD(2) vacuum alignment [1] $\langle \cdot \rangle$ $\langle \cdot \rangle$ $\langle \cdot \rangle$

$$\langle \phi_1 \rangle = v_1 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad \langle \phi_2 \rangle = v_2 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad \langle \phi_3 \rangle = v_3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

VEVs driven to scales with the hierarchy $v_1 \ll v_2 \ll v_3 \sim M_{GUT}$.

Yukawa matrices

• Up-type quarks and neutrinos couple to one Higgs H_{10}^{u} , leading to Yukawa matrices $Y_{ij} \sim \langle \phi_i \rangle \langle \phi_j \rangle^T$ with an universal structure

$$Y^{u,v} = y_1^{u,v} \begin{pmatrix} 1 \ 2 \ 0 \\ 2 \ 4 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} + y_2^{u,v} \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \end{pmatrix} + y_3^{u,v} \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \end{pmatrix}$$

Natural understanding of the hierarchical Yukawa couplings $y_u \sim v_1^2 / M_{\text{GUT}}^2$, $y_c \sim v_2^2 / M_{\text{GUT}}^2$, $y_t \sim v_3^2 / M_{\text{GUT}}^2$.

 $\delta^l \sim 200^\circ$

The neutrino masses are also predicted $m_1 \approx 10.94 \text{ meV}, \quad m_2 \approx 13.95 \text{ meV}, \quad m_3 \approx 51.42 \text{ meV}.$ The model predicts significant deviation from both zero and maximal

N₂ Leptogenesis

CP violation.

• Baryon Asymmetry of the Universe (BAU)

$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.1 \pm 0.1) \times 10^{-10}$$

- Asymmetry generated through CP breaking decays of heavy RHNs into leptons, then converted into baryons through sphalerons [5].
- Leptogenesis generated mainly by the decays of the second RHN "N₂ leptogenesis".
- Using the parameters from the fit, the correct BAU is generated when $M_2 \simeq 1.9 \times 10^{11} \text{ GeV},$

natural expected value for the second RHN mass.

• Down-type quarks and charged leptons couple to a second Higgs H_{10}^d , with a new mixed term involving $Y_{12} \sim \langle \phi_1 \rangle \langle \phi_2 \rangle^T$

$$Y^{d,e} = y_{12}^{d,e} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 4 & 2 \\ 1 & 2 & 0 \end{pmatrix} + y_2^{d,e} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + y_3^{d,e} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + y^P \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

This new term enforces a zero in the (1,1) element of Y^d , giving the GST relation [2] for the Cabbibo angle, i.e. $\vartheta_{12}^q \approx \sqrt{y_d/ys}$. It also leads to a milder hierarchy in the down and charged lepton sectors.

Conclusion Simple Complete Natural Minimal field Renormalisable No tunning of $\mathcal{O}(1)$ parameters Reduces to MSSM content μ term of $\mathcal{O}(TeV)$ Low-dimensional **Predictions** Neutrino masses DT splitting representations CSD(2) from S_4 Proton decay suppressed Normal Hierarchy $\delta^l \sim 200^\circ$

[1] S. Antusch, S. F. King, C. Luhn and M. Spinrath [arXiv:1108.4278] T. Yanagida [hep-ph/9809459] |4| S. Antusch, S. F. King and M. Spinrath [arXiv:1301.6764] R. Gatto, G. Sartori and M. Tonin, Phys. Lett. 28B (1968) 128 |2| P. Minkowski Phys. Lett. B 67 (1977) 421 [3]

M. Gell-Mann, P. Ramond and R. Slansky [CONFP,C790927,315]

P. Ramond [hep-ph/9809459]

[5] M. Fukugita and T. Yanagida Phys. Lett., B174:4547, 1986

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements Elusives ITN No. 674896 and InvisiblesPlus RISE No. 690575.