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CORSIKA 8

• Shower simulations involve complex and computer intensive calculations.

• Many different algorithms, with varying life-times and workloads.

• Large showers require from days to weeks to process.

• Precision is often traded in order to achieve acceptable performance.

These slides present the progress done on the ongoing effort to deploy parallelism in order to
accelerate CORSIKA 8 framework.

2/18



Amdahl’s law

It predicts the expected speed-up from
parallelism:
Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities

Amdahl, Gene M.

AFIPS Conference Proceedings (30): 483–485 (1967)
doi:10.1145/1465482.1465560

It is expressed as

S(n) = 1
(1 − p) + p

n

where: S(n) is the speed-up in function of the number of cores/threads. n is number of
cores/threads and p is the fraction of code that is parallelizable.
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CORSIKA, Radio and Amdahl’s law

• Radio module calculates the signal corresponding to each particle/track for each antenna
of the detector.

• And it often runs as one of the final operations in the sequence. Keep in mind that
currently the all algorithms in the sequence run sequentially. Same applies for the
processing of the particles in the stack.

• We parallelized the calculation of the signal over the detector. It means, in a per
particle/track basis, the antennas response are processed in parallel.

• The expected overall speed-up (CORSIKA wise) then depends hugely of the detector size,
i.e. number of antennas in the detector. I minor, but still significantly, it also depends on
the calculations in the antenna itself.

• With a large detector, the importance Radio module operations grows and tends to
dominate the sequence. In such, situations the speed-up is larger. This is what Amdahl’s
law predicts.
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Gyges

Gyges is a new lightweight C++20 header-only library to manage thread pooling on multicore
CPUs.

• With Gyges , thread creation and destruction costs can be paid just once in the program
lifetime.

• Threads from the pool pick-up tasks as they became available. If there is no task, the
threads go sleeping.

• Tasks can be submitted from multiple threads.
• The submitter gets a std::future for monitoring the task in-place.
• Task assignment and running can be halted at any time, from any thread.
• A gyges::gang can be created with any number of threads.

Status: Released and available here:

https://gitlab.iap.kit.edu/AAAlvesJr/Gyges
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Performance and scaling

• The cost for creation and destruction of gyges::gang objects with different sizes has been
measured using a AMD Ryzen Threadripper 3960X 24-core/48-thread processor running at
2.2 GHz with frequency boost enabled.

• Using same processor scalling behavior has been measured for the task below, performed
2048 times and distributed over different numbers of threads.

1 //number of random numbers to accumulate per task
2 unsigned nsamples = 1000000;// <- 1M of samples
3
4 size_t seed = 0x1234abcd;// <- seed
5 //functor (task)
6 auto functor = [ seed, nsamples ]( double& x) {
7
8 std::mt19937_64 generator( seed );// <- random number generator
9 std::uniform_real_distribution<double> distribution(0.0, 1.0); // <- distribution

10
11 for(unsigned i=0; i < nsamples; ++i) x += distribution(generator); // <- generate and accumulate
12 };
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Performance and scalling

On the left, the speed up factor and timing in terms of number of threads. On the right, the
cost (timing) to create and destroy a gyges::gang with different number of threads.
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Some implementations hints, not details

• corsika::RadioProcess instances own the gyges::gang . Size of it can be specified at
construction time :

1 auto propagator = make_simple_radio_propagator(enviroment);
2 auto coreas = make_radio_process_CoREAS(detector, propagator, nthreads);
3 auto zhs = make_radio_process_ZHS(detector, propagator, nthreads);

• No need to specify template parameters with the new interface.

• The implementation will define a task per thread (not per antenna). Each task will iterate
over the same number of antennas, so that each thread will perform about the same
amount of work.
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Radio process performance profile

• Profiling for scaling over the number of antennas, ie. different detector array sizes.

• Feeding just one particle associated with a single track.

• See the code snipet below

1 ...
2 auto propagator = make_simple_radio_propagator(enviroment);
3 auto coreas = make_radio_process_CoREAS(detector, propagator, nthreads);
4 auto zhs = make_radio_process_ZHS(detector, propagator, nthreads);
5 ...
6 //start chronometer
7 coreas.doContinuous(particle, base, true);
8 //stop chronometer
9 ...

10 //start chronometer
11 zhs.doContinuous(particle, base, true);
12 //stop chronometer
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Performance: detector with 200 antennas
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Performance: detector with 1k antennas
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Performance: detector with 10k antennas
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Performance: detector with 100k antennas
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Full shower and synchrotron emission: performance profile

• On the right: full EM shower, running
both algorithms with 160 antennas.

• In the next slides: profiling synchrotron
emission for scaling over the number of
antennas and the number of tracks

• Feeding just one particle associated in a
circular trajectory.
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Synchrotron emission: detector with 160 antennas
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Synchrotron emission: detector with 1600 antennas
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Physics output consistence

• Comparison of pulse profile between CoREAS and ZHS, for different number of threads

• Note that the lines representing the algorithms, for each number of threads, superimpose
perfectly.
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Conclusions

• Parallelized Radio module behave as expected, in terms of performance and physics.

• Scaling behavior for small antenna arrays should improve in case of more complexes
propagators.

• One should also pay attention to the absolute value of the timing for a given number of
threads, when passing from 200 to 10,000 antennas.
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Accelerating CORSIKA 8: a possible calculation model

Ideally, we would like CORSIKA 8 to take advantage of the availability of resources to
accelerate the completion of a certain task. One possible design could be:

• To perform simulation in rounds, parallelizing the processing of the particles on each generation of
the shower.

• To manage the output using side effects.
• The input data, RNG, geometry, filters etc would be services available to modules and accessible

from the processing threads in read-only mode.
• The simulation manager thread would operate simultaneously an IO manager thread, a monitoring

thread etc.
• The worker threads are commissioned and released by the simulation manager thread.

In summary, it is necessary an efficient, flexible and self-balancing facility to manage the task
distribution and execution, in a transparent and scalable way.



Requirements

• Thread-safe modules and components.

• Fully parallel RNG.

• Thread-safe data-structure for implementing a concurrent particle stack.

• An efficient, flexible and self-balancing facility to manage the task distribution and
execution, in a transparent and scalable way.



gyges::gang interface

1 class gang
2 {
3 gang(unsigned int const thread_count=std::thread::hardware_concurrency(), bool release = true ) ; // <- constructor
4 gang( gang const & other ) = delete;
5 gang( gang && other ) = delete;
6
7 template<typename FunctionType>
8 inline std::future<void> submit_task(FunctionType f) requires Dispatchable<FunctionType>; // <- submit a Dispatchable task here
9 inline void stop(void);// <- notify the running tasks (request stop), interrupt picking up new tasks and destroys the gang

10 inline std::size_t size(void);// <- get the gang size
11 };
12
13 // for_each accepting a pre-created gang
14 template<typename Iterator, typename Predicate>
15 void for_each(Iterator begin, Iterator end, Predicate const& functor, gang& pool);
16
17 // for_each
18 template<typename Iterator, typename Predicate>
19 void for_each(Iterator begin, Iterator end, Predicate const& functor);

The concept Dispatchable specifies signature void operator()(std::stop_token token) noexcept .



gyges::concurrent_queue interface

With this data structure, push and pop operations can be performed concurrently.

1 template<typename T>
2 class concurrent_queue
3 {
4 concurrent_queue();// <- constructor
5
6 concurrent_queue(const concurrent_queue& other)=delete;
7 concurrent_queue& operator=(const concurrent_queue& other)=delete;
8
9 std::shared_ptr<T> try_pop();// <- non-blocking pop

10 bool try_pop(T& value);// <- non-blocking pop
11
12 std::shared_ptr<T> wait_and_pop(std::stop_token stoken);// <- blocking pop
13 void wait_and_pop(std::stop_token stoken, T& value);// <- blocking pop
14
15 void push(T value);// <- non-blocking push
16 bool empty();// <- check if empty
17 };



gyges::gang : submitting a task

1 ...
2 gyges::gang pool{/* hardware number of threads (2 x number of cores)*/};
3 ...
4 auto Task = [ ] (std::stop_token token) noexcept {
5
6 if(token.stop_requested() ) return; //if stop is already requested, return.
7
8 while( condition == true && token.stop_requested() == false) {
9 //do something useful in the loop

10 //ex.: generate some particles...
11 ...
12 }
13
14 //conclude and close the task
15 };
16
17 //task submission
18 auto future = pool.submit_task( Task );
19 //monitor the future
20 ...



Conventional pseudorandom number generators

• Most of the conventional pseudorandom number generators (PRNGs) scale poorly on
massively parallel platforms (modern CPUs and GPUs).

• Inherently sequential algorithms:
si+1 = f (si ),

where si is the i-th PRNG state.

• The statistical properties of the generated numbers are dependent on the function f and
of the size of si in bits. Usually f needs to be complicated and si large.

• PRNGs can be deployed in parallel workloads following two approaches: multistream and
substream.

• Both approaches are problematic due pressure on memory, impossibility to jump into far
away states skipping the intermediate ones, correlations between streams.



Counter-based pseudorandom number generators

The so called “counter-based pseudorandom number generator” (CBPRNG) produces sequences
of pseudorandom numbers following the equation

xn = g(n),

where g is a bijection and n a counter. Basic features:

• High quality output.
• Very efficient. Actually, the designs under consideration allows to trade-off performance

for efficiency in a transparent way.
• Have null or low pressure on memory, and registers, since they can be implemented in a

stateless fashion.
• Very suitable for parallelism, since they allow to jump directly to an arbitrary sequence

member in constant time.



Categories of CBPRNGs

• Cipher-based generators:
• ARS (Advanced Randomization System) is based on the AES cryptographic block cipher

and relies on AES-NI.
• Threefry is based on Threefish a cryptographic block cipher and relies only on common

bitwise operators and integer addition.

• Non-cryptographic bijective transformation generators:
• Philox. Deploys a non-cryptographic bijection based on multiplication instructions

computing the high and low halves of operands to produce wider words.
• Squares. This algorithm is derived using ideas from “Middle Squares” algorithm, originally

discussed by Von Neuman, coupled with Weyl sequences. Three or four rounds of squaring
are enough to achieve high statistical quality. Squares implementation here is original and
supports 128 bit counters with 64 bit output.

The current implementation uses ARS, Threefry and Philox from Random123 library. Squares
implementation is native.

https://www.deshawresearch.com/resources_random123.html


Iterator-based design for parallelism

Iterators are a generalization of pointers and constitutes the basic interface connecting all STL
containers with algorithms.

• Iterators are lightweight objects that can be copied with insignificant computing costs.

• Iterator-based designs very convenient for parallelism.

• A very popular choice for implementing designs based on lazy evaluation.

These features considered all together make an iterator-pair idiom the natural design choice for
handling the counters and the CBPRNG output, in combination with lazy-evaluation to avoid
pressure on memory and unnecessary calculations. The current implementation uses iterators
from TBB library.

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-threading-building-blocks-onetbb.html


Iterator-based API

The streams are represented by
Stream<Distribution, Engine> class:

• It is thread-safe and handles multistream
and substream parallelism.

• Produces pseudorandom numbers
distributed according with Distribution

template parameter.

• Handles 232 streams with length 264 ,
corresponding to 2048 PB of data, in
uint64_t output mode.

• Compatible with C++ standard
distributions.

1 template<typename Distribution, typename Engine>
2 class Stream
3 {
4 public:
5
6 //constructor
7 Stream( Distribution const& dist, uint64_t seed, uint32_t stream );
8
9 //stl-like iterators

10 iterator_type begin() const;
11 iterator_type end() const;
12
13 //access operators
14 return_type operator[](size_t n) const;
15 return_type operator()(void);
16 return_type operator()(size_t);
17 };
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