

- GPU Cherenkov -

- Process Sequence -

and others

G
P

U
s

W
hy

?

A100 108x SMs 132x SMs H100

G
P

U
s

H
ow

?

Memory
Coalescing

Warp Divergence

A
rc

hi
te

ct
ur

e

Calculate photon emission
based on the track substeps

Telescope
User-configurable telescope
with pointing information

Telescope Array

Calculate photon track in
straight line, with
corrections, analytic or
numerical raytracing.

G
P

U
s

H
ow

?
1) Collect particle substeps (linear traces) and reduce to

coordinate, direction, velocity and time

2) Transfer simplified particles to GPU

3) At least 10 particles per AU → 320 per Warp to allow for
effective latency hiding

4) Store surviving particles in local shared memory
(locally & fast), go back to 3) if number is small

5) Generate photons (position, direction, Wavelength,
Time) and write to memory

6) “Iterate” through photons and calculate straight line
impact on horizontal plan, afterwards apply correction.
Clip with array boundary's and store in shared memory.

7) 1 Telescope per warp, N Photons → Check for hit and
store in global memory for download on host machine

Avoids warp
divergence

S
ub

st
ep

pi
ng

S
ub

st
ep

pi
ng

 Id
ea

- Weight edges with probability / (1-p),
 take path with highest/lowest
 probability for path interpolation.
 Alternative: Potential field and
 gradient-descent

- Sample random path or optimal path?

Now something different

Process Sequence V2

C
ha

ng
es

- Clearer Structure and divide between
 base clases, storage classes and
 modifications

- Removed several levels of templates
 and meta templates

C
ha

ng
es

- Clearer Structure and divide between
 base clases, storage classes and
 modifications

- Removed several levels of templates
 and meta templates

- ProcessSequence is now a variadic template, which removes code duplication

C
ha

ng
es

- Clearer Structure and divide between
 base clases, storage classes and
 modifications

- Removed several levels of templates
 and meta templates

- ProcessSequence is now a variadic template, which removes code duplication

- SwitchProcess stores only ProcessSequences → removes the remaining code
duplication

To
D

o

● All currently used templated arguments are easility
known by the stack → move over to shared class
template Tstack and derive information's from it
This allows the user of virtual functions and make
modules callable from outside!

● For this Stack rework

● Cleanup unused/dead code (separate issues #595)

● Change interfaces to

S
ta

ck
V2

Stack V1

● Currently Stack and data to store are heavily interlinked
● Data is stored by information → Array of positions, Array or direction, …

(Unconfirmed) Caching problem, every information require separate load
● Information stored and information required by modules are completely

separate, not meeting requirements fails with loooooong template errors.

Stack V2

● Separation between functionality and Data
● Data should be driven by selected modules e.g. automatically include

history information if required

P
ro

bl
em

s
du

ri
ng

 d
ev

el
op

m
en

t
No LTO / IPO (Link Time / Inter procedural Optimization)
 → ODR (One Definition Rule) issues not catched
 → ABI (Application Binary Interface) issues not catched

Function Parameter order arbitrary
 - clang-tidy bugprone-easily-swappable-parameters

But C++ 20

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

