- GPU Cherenkov -
- Process Sequence -

and others

L1 Instruction Cache

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

LD/
ST

FP64

FP84

FP64

FPG4

FP64

FP64

FP64

FP84

LD/
ST

TENSOR CORE

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

LD/ LD/
ST ST

TENSOR CORE

SFU

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
sT

TENSOR CORE
4™ GENERATION

LD/ W LW W W LD
8T 8T 8T &T 8T SFU

LD/

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD LD/
ST ST

FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4" GENERATION

LD/ LD/ SFU

ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

LD/
ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/
ST

TENSOR CORE

LD/ LD/
ST ST SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

TENSOR CORE

LD/ LD/
ST ST SFU

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

FP32

TENSOR CORE
4™ GENERATION

LD/ W/ DI WD DI LDl
ST sT sT SFU

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

LD/
sT

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD LD/
ST sT

FP64
FP64
FP64
FP64
FP84
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4™ GENERATION

LD/ LD/ SFU

ST ST

192KB L1 Data Cache / Shared Memory

Tex

A100 108x SMs

Tex

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex

132x SMs

H100

Tex

Address _ 128 256

Memory
Coalescing

Thread ID o 31

Warp Divergence

End of branch

J

Previous Process in Physics List

CORSIKA 8

L

Cascade

The currently running
"cascade” simulation

Environment

Full 3D geometry available and completely
"user”-configurable (i.e. no assumed
coordinate system or geometry)

Individual | A Feedback into Oty axtiXFohthEE pFopidrtes
particle tracks cascade (density, composition, refractivity)
Radi .
Radio Process
Track Filter Formalism
o Filter tracks based Calculate photon emission
i on geometry, based on the track substeps
environment,
or particles.
o |
PI’DpagatOI' Telescope Array v
Calculate photon track in Telescope
straight line, with User-configurable telescope
corrections, analytic or with pointing information
numerical raytracing.
-9 y.

ISITT SOISAUd

\']

[T SS320.1

1) Collect particle substeps (linear traces) and reduce to
coordinate, direction, velocity and time

2) Transfer simplified particles to GPU

3) At least 10 particles per AU - 320 per Warp to allow for
effective latency hiding

4) Store surviving particles in local shared memory jiodevar
(locally & fast), go back to 3) if number is small

5) Generate photons (position, direction, Wavelength,
Time) and write to memory

B6) “Iterate” through photons and calculate straight line
impact on horizontal plan, afterwards apply correction.
Clip with array boundary's and store in shared memory.

7) 1 Telescope per warp, N Photons - Check for hit and
store in global memory for download on host machine

10°

10’

=
o
[

Frequency

103

10!

Moliere

I
Moliére 0.0g/cm?

Moliére 0.4g/cm?
Moliére 1.0g/cm? |
Moliére 2.0g/cm?
Moliére 3.0g/cm?
Moliére 4.0g/cm?

v
i

[T
j%

T \III|T||

N
~

6/deg

—

F =

qgE + qvx B
FElectric Magnetic
Jorce force

P
- ar”
[Zhie =

3

10 r"r'i"r"r"r'r":r“r"r'i"i":r"r"u“i"r":r“l"r"

i —— Moliere Z*(7Z+1)
' M011€11622

L
4 ELNIS |

=
- .E.E‘[.-.-

I'"I"'i'"l"|'"|"'|"1:"T"\'"I" T'Tl"r"r“r"u":r"r'r "I"i"i'"l"'\"

-0.1 -0.073 -005 -0023

0 0025 005 0075 01
v angle. radians

- Weight edges with probability / (1-p),
take path with highest/lowest
probability for path interpolation.

Alternative: Potential field and
gradient-descent

- Sample random path or optimal path?

0000000
_— »0 0 00060 00

Now something different

Process Sequence V2

- Clearer Structure and divide between
base clases, storage classes and
modifications

- Removed several levels of templates
and meta templates

v process_v2
> basic
> container

> decorator

ContinuousProcessStepLength.hpp

Process.hpp

ProcessReturn.hpp

util.hpp

corsika {

< ... TProcesses>

=] = cCa an o
ProcessSequence;

Sae

SS
SS,

s, TSequence...> : ;Sequence<TSequence...> {

std: :decay_t<TProcess>;
= ProcessSequence<TSequence...>;

TProcess process_;

- Clearer Structure and divide between
base clases, storage classes and
modifications

- Removed several levels of templates
and meta templates

- ProcessSequence is now a variadic template, which removes code duplication

< TCondition, TSequence, USequence>

SwitchProcess
BaseProcessContainer<SwitchProcess<TCondition, TSequence, USequence>>,
SwitchProcessBase {

std: :decay_t<TCondition>;
std:
std:

:decay_t<TSequence>;
:decay_t<USequence>;

TCondition select_;

corsika: :ProcessSequence<TSequence>
A_;

- C|earer Structure and C corsika: :ProcessSequence<USequence>
base clases, storage cl B

modifications

- Removed several levels of templates
and meta templates

- ProcessSequence is now a variadic template, which removes code duplication

- SwitchProcess stores only ProcessSequences — removes the remaining code
duplication

e Allcurrently used templated arguments are easility
known by the stack - move over to shared class
template Tstack and derive information's from it
This allows the user of virtual functions and make
modules callable from outside!

« Forthis Stack rework
e Cleanup unused/dead code (separate issues #595)

e Change interfaces to

doDecay (T

< TParticle>
TimeType getlLifetime(TParticle& particle);

Stack V1

e Currently Stack and data to store are heavily interlinked

e Datais stored by information — Array of positions, Array or direction, ...
(Unconfirmed) Caching problem, every information require separate load

e Information stored and information required by modules are completely
separate, not meeting requirements fails with loooooong template errors.

Stack V2

e Separation between functionality and Data
e Data should be driven by selected modules e.g. automatically include
history information if required

No LTO / IPO (Link Time / Inter procedural Optimization)
-> ODR (One Definition Rule) issues not catched
- ABI (Application Binary Interface) issues not catched

cmake_minimum_required(VERSION 3.9.u4)

include(CheckIPOSupported)
check_ipo_supported(RESULT supported OUTPUT error)

add_executable(example Example.cpp)

if(supported)

message (STATUS "IPO / LTO enabled")

Set_property(TARGET example PROPERTY INTERPROCEDURAL_OPTIMIZATION TRUE)
else()

message(STATUS "IPO / LTO not supported: <${error}>")
endif()

Function Parameter order arbitrary
- clang-tidy bugprone-easily-swappable-parameters

TType min;
TType max;
} range_;

module control.addOption
control: :ControlOption<
.setConstraint

.setConstraint(control::c

RangeCheck Range range
: range_(range) {]

Mmin=5.8,

>({optionl)) 4

.max=1._8&

)

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

