The Cherenkov Telescope Array

Computing and Data Handling - status and plans

Initiative for a Data and Analysis Centre for Astroparticle Physics

2017, November - Karlsruhe

Gernot Maier

The Cherenkov Telescope Array (CTA)

next-generation gamma-ray observatory

- order of magnitude increased sensitivity, significantly improved angular and energy resolution, broadened energy range, increased field of view
- Two observatories: South (Chile) with 99 telescopes and North (La Palma) with 19 telescopes
- > >30 countries and >1200 members in the consortium
- observatory (not an experiment)

CTA Telescopes

Mid-size telescope 12 m diameter 90 GeV to 10 TeV large field of view precision instrument

Small-size telescope 4-5 m diameter >5 TeV large field of view large collection area Large-size telescope 23 m diameter >20 GeV rapid slewing (<50s)

Typically ~2000 pixel cameras Trigger rates: LST: 15 kHz, MST: 9 kHz, SST: 0.6 kHz readout of roughly 60-100 ns with 0.25-1 GHz sampling

Prototypes

Prototype of a CTA mid-size telescope Berlin Adlershof

> Dual-mirror mid-size telescope (Arizona)

Small-size telescope (Sicily)

CTA Timeline

Release of official CTA Integrated Project Schedule in summer 2017

The CTA Observatory

- legal entity that will operate the instrument during 30 years
- announcement of opportunity for observation proposal collection
- responsible for science user support
 - science tools (images, spectra, light curves, ...)
 - high-level science data (event data plus instrument response) functions and technical data)
- > operates outreach gateway
- different categories of users
 - guest observers, consortium, observatory users
- all data will be public after predefined proprietary period
 - archive will ensure data access in line
 - open data formats
- > Virtual Observatory compatibility

CTA Headquarters Bologna

CTA Science Data Management Center Zeuthen

CTA Observatory: Operations, Processing, Users

CTA Observatory: Operations, Processing, Users

Telescope	Data rate	Data rate (Central Trigger)
LST	110Gb/s	40Gb/s
MST	450Gb/s	150Gb/s
SST	60Gb/s	30Gb/s
Total	610Gb/s	220Gb/s

Central Trigger

 \Rightarrow 40 PB/year (max 370 TB/day)

Full waveform signal from photodetectors (Total 1314h): 130 PB/year

Zero suppression, trace integration: 36 Gb/s (21 PB/year)

- > Resulting data rates (assuming 1300 h of observing per year):
 - CTA South: 5.4 Gb/s
 - CTA North: 3.2 Gb/s

Constrains

Gernot Maier

CTA | Nov 2017

- Iimited overall and network bandwidth of 1GB/s
- transfer data in less than 10 days

Challenge: compression / event selection

Daily data transfer duration/ Day of the year

⇒ 4 PB/year (max 370 TB/day)

Gernot Maier

CTA | Nov 2017

"massive computing in the desert"

	Telescope	Data rate	Data rate (Central Trigger)	Central Trigger				
	LST	110Gb/s	40Gb/s	Full waveform signal and photodetectors (Tota 314h):				
	MST	450Gb/s	150Gb/s	130 PB/year				
	SST	60Gb/s	30Gb/s	Zero suppression rac ration:				
	Total	610Gb/s	220Gb/s	36 Gb/s (21 PB/y				
 CTA South: 5.4 Gb/s CTA North: 3.2 Gb/s Constrains 								
 Imited overall and network bandwidth of 1GB/s transfer data in less than 10 days Challenge: compression / event selection 								
		⇒ 4 PR	lvear (max 37	0 TB/day				

CTA Data Volume & Computing

Data calibration, reconstruction, analysis, MC production

- > data be archived for 30 years of operations + 10 years
- > one reprocessing per year
- resulting data per year:
 - raw data: 4PB/y
 - processed data: 4PB/y (x2)
 - Monte Carlo: 20 PB/year

Computing Operation Phase (in HS06):

Year	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Cumulative raw data volume(PB)	23	27	31	35	39	43	47	51	55	59
Cumulative event data volume(PB)	47	59	71	83	96	108	120	132	144	156
Monte-Carlo data volume(PB)	20	20	20	20	20	20	20	20	20	20
Technical data volume(PB)	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
Cumulative Data(PB)	67	79	92	104	116	128	141	153	165	177

CTA Distributed Computing Model (Grid/Cloud)

CTA Challenges

> Data Rates:

Iarge data rates taken at a remote site and transfer to Europe

> Archive and open access:

provision of guaranteed long-term access to the data products

> Alerts:

- results and alerts to the astronomical community from transients in near real-time (latency < 30 s)</p>
- Multi-messenger interfaces integration into available solutions from astronomical community

Simulations:

- sufficiently accurate instrument response functions to guarantee small systematic uncertainties. Period(run)-wise Monte Carlo simulations
- CORSIKA & the next 30 years
- modern computing architecture (GPUs, ARMs)

> Analysis:

- Iikelihood minimisation problems
- gamma selection methods (hadron+electron suppression); machine learning methods

> User Support & Training:

service and support for a scientific community

Common themes

> astroparticle analysis facility

dedicated computing / data access for German astroparticle groups

- > common tools
 - most importantly CORSIKA
- > methods development

machine learning, imaging, likelihood methods, ...

> high-throughput computing in remote places

efficiency, data compression, data transmission, ...

