EXPLORING THE LIMITS OF NEW PHYSICS AT THE LHC

Nikita Schmal

9th bwHPC Symposium

23.10.2023

The Large Hadron Collider (LHC)

- ► Particle accelerator with 27km circumference
- Four different interaction points (ATLAS, CMS, LHCb, ALICE)
- Protons with energies of 6.5 TeV collide every 25 ns (Run 2)
 - Dataflow of order PB/s

The Standard Model of Particle Physics

- Theoretical framework describing our current understanding of particle physics
- Experimental discovery of the Higgs boson at the LHC 'completed' the Standard Model
- Shows great success at describing large number of observations

The Standard Model of Particle Physics

Impressive agreement for large number of different measurements

ATL-PHYS PUB-2022-009

The Standard Model of Particle Physics

Impressive agreement for large number of different measurements

- However: Large number of unanswered questions
 - Dark matter/energy
 - Matter/Antimatter asymmetry
 - ► Neutrino masses
 - Strong CP problem

ATL-PHYS PUB-2022-009

Going beyond the Standard Model

- Idea: Introduce additional new particles (axions, sterile neutrinos, supersymmetry)
- > Problem: Countless number of possible models to test individually
- Solution: Use a model agnostic approach to look for new physics

Standard Model of Elementary Particles

Solution: Extend the SM via a so-called Effective Field Theory approach

► Consider the decay: $\mu^- \longrightarrow e^- \nu_e \nu_\mu$

Solution: Extend the SM via a so-called Effective Field Theory approach

► Consider the decay: $\mu^- \longrightarrow e^- \nu_e \nu_\mu$

► Solution: Extend the SM via a so-called Effective Field Theory approach

► Consider the decay: $\mu^- \longrightarrow e^- \nu_e \nu_\mu$

Decreasing energy

three generations of matter interactions / force carriers (fermions) (bosons) ≃2.2 MeV/c² ≃1.28 GeV/c² ≃173.1 GeV/c2 ≃124.97 GeV/c² mass charge 0 ⅔ Η С g τ ¥₂ u ¥₂ 0 spin $\overline{\nu}_e$ higgs gluon charm top up ≃4.18 GeV/c² ≃4.7 MeV/c² ≈96 MeV/c² UARK d ⁻⁷³ ¹√2 S b SCALAR BOSO ¥₂ 1√2 photon strange bottom down u_{μ} ≃105.66 MeV/c² ≈1.7768 GeV/c² =0.511 MeV/c2 =91.19 GeV/c² -1 τ е μ 1∕2 ¥₂ Z boson electron tau muon EPTONS <0.17 MeV/c² <18.2 MeV/c² <1.0 eV/c² ≃80.433 GeV/d Vμ ντ 1/2 1/2 1√2 *e* electron muon tau W bosor neutrino neutrino neutrino

Standard Model of Elementary Particles

Solution: Extend the SM via a so-called Effective Field Theory approach

► Consider the decay: $\mu^- \longrightarrow e^- \nu_e \nu_\mu$

Standard Model of Elementary Particles

SMEFT framework parametrizes the new physics in such vertices

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{d}^{T}$$

> We use these parameters to put limits on new physics: Large number of possible contributions Contributions depend on processes considered ► **Goal:** Put constraints on these contributions

Performing statistical analyses

Compute the likelihood that given data matches theory

 $\mathcal{L}_{excl} = \operatorname{Pois}(d|p(\alpha_n, \theta_i,$

> We use LHC data published by both the ATLAS and CMS experiments

- ► For results shown here Higgs, Di-Boson and electroweak data (LEP); ~ 400 datapoints
- Sufficiently accurate theory predictions are necessary
 - ► This is where **NEMO** comes in

b))Pois
$$(b_{CR}|b\,k)\prod_i C(\theta_i,\sigma_i)$$

Analyses require computation of theory predictions

Credit: Stefan Hoche

Analyses require computation of <u>complex</u> theory predictions

Credit: <u>Stefan Hoche</u>

► Earlier Example: $\mu^- \longrightarrow e^- \nu_e \nu_\mu$

► For the measurement shown:

► For the measurement shown:

Performing statistical analyses

Compute the likelihood that given data matches theory

 $\mathcal{L}_{excl} = \operatorname{Pois}(d|p(\alpha_n, \theta_i))$

- > Theory predictions are computed using **NEMO**
 - Large number of different processes
 - Effects from all 21 additional parameters describing new physics
- > 21-dimensional likelihood now needs to be mapped
 - Use NEMO to run multiple Markov chains

b))Pois
$$(b_{CR}|b\,k)\prod_i C(\theta_i,\sigma_i)$$

One-dimensional results

- Each distribution describes one of the parameters for new physics effects
- Extract limits for new physics from these

Two-dimensional results

Study correlations between different parameters

Extracted limits

► What do these limits tell us?

arXiv:2208.08454 [hep-ph]

Matching constraints to models

► Back to our example:

Matching to model with W-Boson predicts new physics at ≈ 100 GeV

Matching constraints to models

► Back to our example:

► Matching for one of our studies in <u>arXiv:2108.01094</u> [hep-ph]

Matching to model with W-Boson predicts new physics at ≈ 100 GeV Nowadays we know: $m_W \approx 81$ GeV

Outlook and Summary

- Where do we go from here?

- > Why NEMO is indispensable:
 - Computation of numerous complex theory predictions
 - Mapping of high-dimensional parameter spaces

 \blacktriangleright Shown results from an analysis using 21 parameters; ~400 datapoints Current work extends parameters space up to 39 and extends the dataset

Thank you for your attention!

Nikita Schmal

9th bwHPC Symposium

23.10.2023