universitätfreiburg

Fair sharing of resources between clusters with AUDITOR

TIDIUM

Bundesministerium

für Bildung

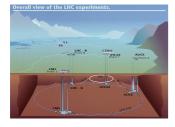
und Forschung

Physikalisches Institut

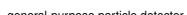
Albert-Ludwigs-

Benjamin Rottler, Michael Böhler, Anton J. Gamel, Dirk Sammel, Markus Schumacher

9th bwHPC Symposium 23 October 2023 Mannheim

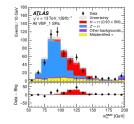

universitätfreiburg

Introduction High energy physics (HEP)

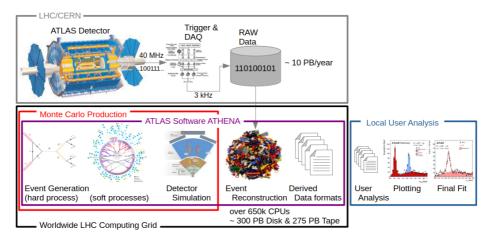

Goal: Find new elementary particles or measure properties of existing ones \rightarrow collide particles, analyze recorded data with the help of simulations

PATLAS

Large Hadron Collider (LHC)


- accelerate protons to very high energies and collide them
- 40 000 000 collisions per second

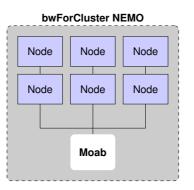
- general-purpose particle detector
- \sim 3000 collisions per second
- $\sim 10 \, \text{PB/year}$


ATLAS detector

Data analysis

• Measurement of Higgs-boson properties in the $H \rightarrow \tau^+ \tau^-$ decay channel

Introduction ATLAS Data-Analysis Workflow



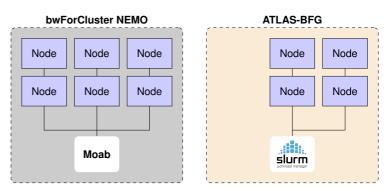
- Simulation (Monte Carlo Production), event reconstruction, and initial post-processing on Worldwide LHC Computing Grid (WLCG) → ATLAS production/analysis jobs
- · Final steps of analysis on local university cluster

Introduction Integration of opportunistic resources

bwForCluster NEMO¹

- \approx 18000 cores / \approx 800 TB storage (BeeGFS)
- General software setup
- Scheduler: Moab
- Single user policy
- Jobs by users of local HEP research groups

¹ Neuroscience, Elementary Particle Physics, Microsystems Engineering and Material Science

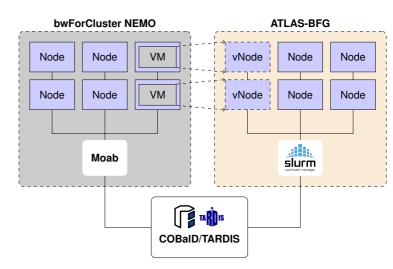

Introduction Integration of opportunistic resources

bwForCluster NEMO¹

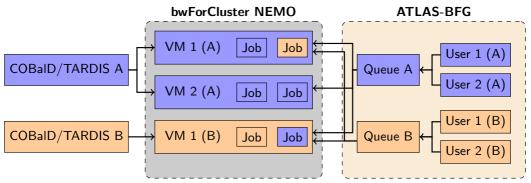
- \approx 18000 cores / \approx 800 TB storage (BeeGFS)
- General software setup
- Scheduler: Moab
- Single user policy
- Jobs by users of local HEP research groups

ATLAS-BFG

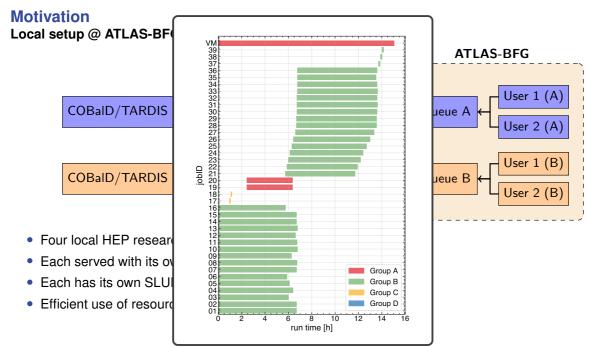
- \approx 3400 cores / \approx 4 PB storage (dCache)
- Part of WLCG
- Environment specific to ATLAS
- Scheduler: SLURM
- ATLAS production/analysis jobs
- Jobs by users of local HEP research groups
- ¹ Neuroscience, Elementary Particle Physics, Microsystems Engineering and Material Science universitätfreiburg Benjamin Rottler | Fair sharing of resources between clusters with AUDITOR | 23 October 2023

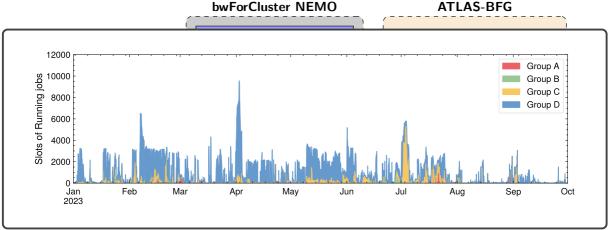


3/12

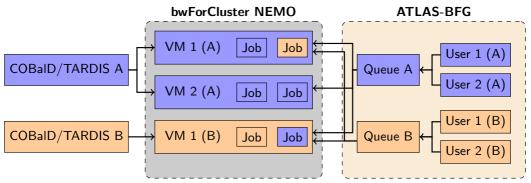

Introduction Integration of opportunistic resources

COBaID/TARDIS


- Opportunistically integrates resources from NEMO into ATLAS-BFG
- · Based on demand and availability
- Main developers from group of Prof. Günter Quast (KIT)
 - Also contributions from Freiburg
 - \rightarrow https://github.com/MatterMiners

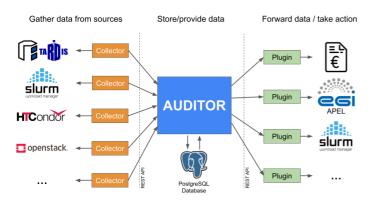

Motivation Local setup @ ATLAS-BFG

- Four local HEP research groups (A to D) with a share in NEMO
- Each served with its own COBalD/TARDIS instance
- Each has its own SLURM partition (job queue)
- · Efficient use of resources due to sharing VMs across HEP groups



Motivation Local setup @ ATLAS-BFG

- Each has its own SLURM partition (job queue)
- Efficient use of resources due to sharing VMs across HEP groups

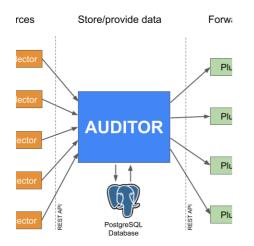

Motivation Local setup @ ATLAS-BFG

- Four local HEP research groups (A to D) with a share in NEMO
- Each served with its own COBalD/TARDIS instance
- Each has its own SLURM partition (job queue)
- Efficient use of resources due to sharing VMs across HEP groups

How to reflect amount of provided NEMO resources in ATLAS-BFG?

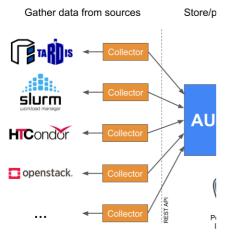
Auditor Accounting Ecosystem

AUDITOR: AccoUnting Data handling Toolbox for Opportunistic Resources


Modular accounting ecosystem

- Collectors
 - Accumulate data
- Core component
 - Accept data
 - Store data
 - Provide data
- Plugins
 - Take action based on stored data

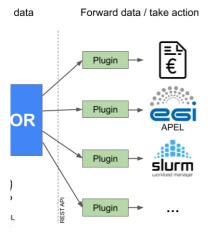
Documentation and code


 \rightarrow https://github.com/ALU-Schumacher/AUDITOR

Auditor Core component

- Implemented in Rust
 - Access via REST interface
- Unit of accountable resources: Record
- Data stored in PostgreSQL
- Completely stateless
 - No dataloss
 - Suitable for high availability setups
- Provided as **RPM** or **Docker container**
- Client libraries in Rust and Python

Collectors Accumulate data

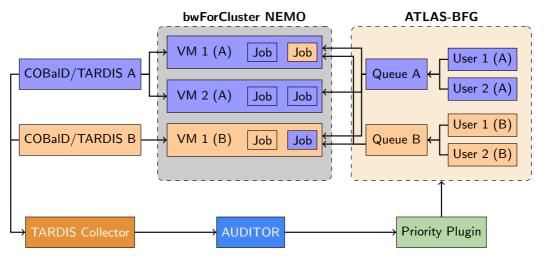


TARDIS Collector

- Collect drone information
- SLURM Collectors (2 types)
 - Collect information about SLURM jobs via SLURM CLI commands
- HTCondor Collector (developed @ KIT)
 - Equivalent of SLURM collector for HTCondor
- Planned collectors
 - OpenStack
 - Kubernetes

• • • •

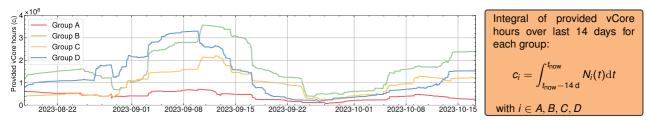
Plugins Take action based on stored data



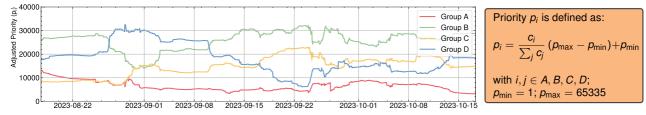
Priority plugin

- · Compute priorities from a list of records
- Update priorities on a batch cluster
- APEL accounting plugin (work in progress)
 - Report accounting data to WLCG accounting service (APEL)
- Utilization report (future project)
 - Analyse requested vs. consumed resources of a user
 - Send a weekly report with possible savings and CO₂ footprint

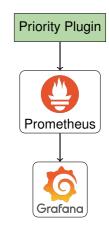
AUDITOR Priority plugin


Adapting the ATLAS-BFG priority based on provided NEMO resources

• use TARDIS Collector/AUDITOR/Priority Plugin pipeline to adjust group priorities on ATLAS-BFG

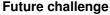

AUDITOR Priority plugin

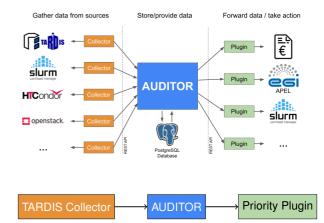
Results


• Provided resources of the four local HEP groups

Priority is adjusted according to the provided resources

AUDITOR Priority plugin Real-time monitoring




- Recent development: Prometheus exporter for priority plugin
- Real-time monitoring of priority adjustments (with e.g. Grafana)

Conclusion

- AUDITOR provides an accounting ecosystem for various use cases
- NEMO resources are opportunistically integrated into ATLAS-BFG cluster
 - known environment for local HEP users
 - sharing resources across HEP groups allows for efficient use
- Priority plugin guarantees fair distribution of integrated resources between HEP groups

Huge growth in dataset size and raising demand for sustainable compute resources increases need for efficient resource utilization

References

Website: https://alu-schumacher.github.io/AUDITOR GitHub: https://github.com/ALU-Schumacher/AUDITOR FIDIUM: https://fidium.erumdatahub.de

Benjamin Rottler Albert-Ludwigs-Universität Freiburg benjamin.rottler@physik.uni-freiburg.de

Record Unit of accountable resources

- record_id: uniquely identifies the record
- meta: multiple key value pairs of the form String -> [String]
- components: arbitrary number of resources that are to be accounted for (CPU, RAM, Disk, ...)
 - scores: (multiple) accounting scores supported
- start_time, end_time: datetime in UTC
- runtime: calculated as end_time start_time

• meta & component fields allow for maximal flexibility

```
ł
    "record id": "hpc-4126142".
    "meta":
      "group id": [ "atlpr" ],
      "site id": [ "hpc" ].
      "user id": [ "atlpr001" ]
    },
    "components": [
        "name": "Cores",
        "amount": 8.
        "scores": [
            "name": "HEPSPEC06".
            "value": 10.0
          },
            "name": "HEPScore23",
            "value": 10.0
      },
        "name": "Memory".
        "amount": 16000,
        "scores": []
    "start time": "2023-02-24T00:27:58Z"
    "stop time": "2023-02-24T03:41:35Z".
    "runtime": 11617
},
```