

INNUMAT Workshop in Madrid from 16 – 17, November 2023

Development of Material Database and Material Property Handbook for EU DEMO

E. Gaganidze (KIT), S. Mohamed (KIT), F. Gillemot (CER), I. Szenthe (CER), A. Norman (UKAEA), J. Echols (UKAEA), D. Terentyev (SCK), G. Pintsuk (FZJ), G. Aiello (EUROfusion)

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Structural, armour and heat sink materials for DEMO

Harsh operational environment of DEMO **First Wall** (FW) and **Divertor** Plasma Facing Components (PFCs)

- High fluence of neutrons
- Energetic ions escaping plasma
- High thermal flux

EUROFER97, owing to good balance of mechanical and thermo-physical properties and good resistance to neutron irradiation – a baseline structural material for DEMO First Wall/Blanket

Tungsten, owing to low sputtering yield, high melting point and high thermal conductivity – a baseline armour material for DEMO PFCs

CuCrZr, owing to favorable combination of high thermal conductivity and good mechanical properties – a baseline DEMO divertor heat sink material

EUROfusion EDDI Material Database & Handbook (MD&H)

Realization of in-vessel components for DEMO

- Development of sound material databases (MD) on structural, heat sink, armour and functional materials
- Development of **DEMO Design Criteria (DDC)** for in-vessel components

Objective: Development of MD & MPH on EUROFER97, CuCrZr, W

MPH - Properties to be covered

Materials: EUROFER97, CuCrZr, W

Mechanical properties

- Tensile properties
 - Yield strength
 - Tensile strength
 - Elongation
 - Reduction of area
- Young's modulus
- Hardness
- Poisson's ratio
- Charpy impact properties
- Fracture toughness
- Fatigue crack growth
- Low cycle fatigue
- Creep
- Irradiation creep
- Swelling
- Helium effects

FER97, CuCrZr, W	Materials: W
 Thermo-Physical properties Coefficient of thermal expansion Density Thermal conductivity Thermal diffusivity 	 Recrystallization behavior DBTT Hardness
 Specific heat Electrical resistivity Melting temperature 	 Oxidation and corrosion Low-T corrosion High-T oxidation & corrosion
 Magnetic properties (EUROFER97) Magnetic saturation Remnant magnetization Coercive field 	 Fusion-specific properties High heat flux properties Neutron irradiation & transmutation Plasma-material interaction Erosion & redeposition Hydrogen implantation & retention

Data qualification & storage

Karlsruher Institut für Technologie

DATA QUALIFICATION

MATERIAL IDENTIFICATION

- manufacturer
- heat/product/sub-product
- thermo-mechanical treatment ...

SPECIMEN IDENTIFICATION

- geometry
- extraction direction
- surface finish ...

IRRADIATION CONDITION

- irradiation facility
- temperature
- dose ...

TESTING and RESULTS

- testing standard, parameter
- temperature
- environment
- results, validity ...

EDDI MATERIALS DATA STORAGE

File Operations									
Ma	terial			Heat			Properties	;	
Clean steel: Base CuCrZr: Base Eurofer HT: Base Eurofer-ODS: Base Eurofer97-ODS: Base Eurofer97: Base		 All 9933 	402: 02/C1 78 78: 3 78: rod 1 91 91: 91/D1 91: KIT_Box 1 91: KIT_Box 2 91: KIT_Box 3			All Composition Creep FCG Fatigue Fracture Impact Microstructure Tensile			
		1.1.1.1		View Tests					
Material		Туре		Heat Number	9	pecimen Number		Test Type	
Eurofer97	Base		994578		994578-2		Tensile		
Eurofer97	Base		994578		42		Tensile		
Eurofer97	Base		994578		994578-1		Tensile		
Eurofer97	Base		994578		41		Tensile		
Eurofer97	Base		994572		ZVW2		Tensile		
Eurofer97	Base		994572		ZVW1		Tensile		
Eurofer97	Base		994572		994572-3		Tensile		
Eurofer97	Base		994572		12		Tensile		
Eurofer97	Base		994572		994572-2		Tensile		
Furofer97	Race		004572		16		Tensile		

- Custom database for storage materials test data
- Importing the data from data collection Excel templates
- Exporting function for further data handling

EUROFER MPH

Reduced Activation Ferritic/Martensitic (RAFM) steel EUROFER97 – European reference structural material for ITER TBM and DEMO Blanket

Chemical composition (RCC-MRx)

	С%	S%	Р%	Si%	Mn%	Ni%	Cr%	Mo%	W%	As+Sn+ Sb+Zr%
min	0.09	-	-	-	0.2	-	8.5	-	1	0
max	0.12	0.005	0.005	0.05	0.6	0.01	9.5	0.005	1.2	0.05

	Ta%	V%	Nb%	Cu%	B%	Al%	Co%	N ₂ %	Ti%	Fe%-
min	0.1	0.15	-	-	-	-	-	0.015	-	Balance
max	0.14	0.25	0.005	0.01	0.002	0.01	0.01	0.045	0.02	Balance

- Production of large industrial batches: EUROFER 97-1, ..., EUROFER97-4
- Availability of different product forms: plates, rods
- Development of joining technologies
- Examination & characterization by several European Research Units (RUs)
- Investigation of irradiation influence

EUROFER MPH – Property sheet structure

(C) EUROfusion DEMO MATERIAL PROPERTIES HANDBOOK MATERIAL PROPERTY EUROFER97 4.1. Yield strength 4 Mechanical properties 4.1 Yield strength The yield strength, R_{was}, YS or S_X [MPa], is the engineering stress at which, by convention, it is considered that plastic deformation of the material has commenced. The following types of yield strengths, which correspond to the approaches listed above, may be specified: Specified offset yield strength, (usually an offset strain of 0.2% is specified)-the engineering stress at which the material has been plastically strained by an amount equal to the specified offset strain. This stress is reached at the point where the stress-strain curve intersects a line having a slope equal to the modulus of elasticity and constructed such that it is offset from the linear portion of the stress-strain curve by an amount equal to the specified strain. Upper or lower yield strengths. The upper (first maximum) or the lower (minimum, ignoring transient effects) engineering stress measured during discontinuous yielding occurring at or near the onset of plastic deformation. Figure 4.1-1 shows the yield strength in as received state together with the average and minimum curves. The average curve was calculated by fitting the data with a 5th order polynomial function. The minimum curve is calculated on the base of the statistical analysis of the entire dataset according with the following equation $R_{p02\min}(T) = R_{p02average}(T) - 1.96$ SD, where SD is the standard deviation obtained for the entire dataset in the procedure for the determination of $R_{p02 average}(T)$ curve. The function for both curves is provided in Table 4.1-1 and the determined average yield strength data as a function of temperature are listed in Table 4.1-2. General description of the property Relevant formulas Page 9 of 101

Figure 4.1-1 Yield strength of as-received EUROFER97 together with average and minimum curves. Rapid drop of the yield strength at elevated temperatures is due to the approach to α - γ transition (Austenization start and end temperatures for EUROFER97, Ac11=820°C, Ac11=890°C)

Table 4.1-1 Average and minimum yield strength curves of as-received EUROFER97

EURO*fusion*

C) EUROfusion Table 4.1-2: Average yield strength values determined on as received EUROFER97 Temperature Ret anos MPa *¢ 1090 -200 -150 \$43

-200	689	
-50	595	
0	544	
20	532	
50	520	
300	509	
150	503	
200	497	
250	487	
300	473	
350	454	
400	431	
450	403	
500	370	
550	331	
600	279	
304	1.00	

References

ASTM E-6-03 "Standard Terminology Relating to Methods of Mechanical Testing" 1.

ISO-6892:1998. Metallic Materials-Tensile testing 2.

ASTME8/8M Standard Test Methods for Tension Testing of Metallic Materials 3

E. Gaganidze: "Final report on PPPT Material Property Handbook on Eurofer" (KIT, 2015)

Institute for Applied Materials

EUROFER MPH – Average and minimum curves

- Determination of the *average values* by means of statistical analysis (best fit)
- Determination of the *minimum values* followed internationally established methodologies

Minimum Curve

- Calculate an average S_{y,av} curve by a statistical analysis
- Determine standard deviation σ
- Built the minimum curve by offsetting the average curve

$$S_{y,min}(T) = S_{y,av}(T) - 1.96\sigma$$

Alternative Minimum Curve $X_{min}(T) = \frac{X_{min}(RT)}{X_{av}(RT)} X_{av}(T)$

 $\pm 1.96\sigma \leftrightarrow$ bounds of 95% confidence

Institute for Applied Materials

EUROFER MPH – Yield Strength in the irradiated state

- Grouping the results according to the irradiation (DPA, T_{irr}) and testing conditions
- Determination of the *average values* by means of statistical analysis (best fit)

Testing conditions	Function (T in °C, Stress in MPa)
<3 dpa, <350°C	825.1-1.02703T+0.00254T ² -4.3385E-6T ³
7-15 dpa, <350°C	1056-0.61046T
30-42 dpa, <350°C	1157.9-0.644T
70-78 dpa, <350°C	1240.3-0.72T
Testing conditions	Function (T in °C, Stress in MPa)
16-18 dpa, ≥350°C	1651.1-2.884T

EUROFER MPH – n-irradiation induced embrittlement

- DBTT (KLST) as a function of damage dose
- Grouping of the results according to irradiation temperature
- Saturation behaviour of the low temperature embrittlement at the achieved damage doses

- Evolution of the ASTM E1921 reference temperature (T_{0Q}) with the irradiation dose at T_{irr}=300 °C.
- Lack of high dose irradiation data
- Lack of J-R curve behavior

EUROFER MPH – Gap analysis & testing

Unirradiated (EUROFER97-3 & EUROFER97-4)

- Fatigue properties (tests in progress)
- Fracture Mechanical (FM) properties (J_{Ic}, J-R ...) (tests in progress)
- Fatigue crack growth (tests in progress)
- Creep properties (tests in progress)
- Thermal aging effects (tensile, Charpy-V, FM) (tests in progress)
- Mechanical properties on weldments for proper PWHT (tests to be prepared)

Irradiated (EUROFER97-3 & EUROFER97-4)

- Tensile properties in a wide temperature (T_{irr}=200-550°C) and dose range (irradiation in progress)
- Fatigue properties (irradiation in progress)
- **Fracture Mechanical (FM)** properties (J_{Ic}, J-R ...) (irradiation in progress)
- Fatigue crack growth properties (tests to be prepared)
- Swelling & Helium effects (tests in progress & to be prepared)
- Irradiation creep (tests in progress)
- Mechanical properties on weldments for proper PWHT (tensile, FM) (tests to be prepared)

Institute for Applied Materials

CuCrZr MPH – Reference composition and heat treatment

Chemical composition

- a) CuCrZr (ITER-Grade)
 - \rightarrow 0.6-0.9 wt%Cr, 0.07-0.15 wt% Zr, <0.002 wt% O, <0.03 wt% others
- b) CuCr1Zr (European Copper Insititute, German Copper Institute, C18150):
 - → 0.5-1.2 wt%Cr, 0.03-0.3 wt% Zr, 0-0.08 wt% Fe, 0-0.1 wt% Si, 0.2 wt% others

Heat treatment

- **SAA:** Solution annealing at 980~1000°C for 30~60 min, water quenched and aged at 460~500 °C for 2~4 h.
- **b) SAcwA:** Solution annealing at 980~1000°C for 30~60min, subsequent cooling in water, further cold working by 40~70%, and ageing at 450~470°C for 2~4 h.
- c) SCA: received as SAA, HIPped at 1040°C for 2h at 140 MPa followed by solution annealing at 980°C for 0.5 h with a slow cooling rate of 50~80°C/min between 980 and 500°C, and final aging at 560 °C for 2h.
- d) SAoverA: Solution annealing and ageing at non-optimal condition (over-aged) due to specific manufacturing processes.
- e) PA (Prime aged): material supplied by Outokumpu Oyj: solution annealed at 960°C for 3h, water quenched and then PA at 460°C for 3 h. After PA specimens received further annealing

CuCrZr MPH – Tensile properties for SAcwA condition

- Collection and assessment of literature data on CuCrZr for different thermo-mechanical treatments
- Generation of new data in the frame of EUROfusion MAT project

aged

CuCrZr MPH – Dose dependent tensile properties

- UE vs irradiation dose of CuCrZr for SAA condition after irradiation at 150°C and 300°C
- TE vs irradiation dose of CuCrZr alloy for SAA condition after irradiation at 150°C and 300°C

UE vs irradiation dose of CuCrZr for SAcwA condition (irradiation temperature in between 158-192 and 162-184 °C

CuCrZr MPH – Tensile properties for SAcwA & HRP conditions

Manufacturing process -Hot Radial Pressing (HRP)

Heating & holding component to 580°C for 2h under 60 MPa

Strong reduction of strength after HRP treatment

CuCrZr MPH – Testing needs

Reference state: CuCrZr (SAcwA + HRP)

CuCrZr									
		Unirradiated			li	rradiated			
	Testing temperature [°C]	note	Irradiation dose [dpa]	Irradiation temperature [°C]	Testing Temperature [°C]	note			
Tensile properties	RT-600	True stress vs. true strain data	1, 3, 9	150, 250, 350, 450	RT, Tirr	Basic input parameter for simulation works			
Creep	100-600	e.g. Creep curve, negligible creep temperature curve	1, 3, 9	300, 350	Tirr	post irradiation creep			
			9	150, 250, 350	Tirr	interrupted irradiation creep			
Charpy impact	0-400		1, 3, 9	150, 250, 350	0-400				
Fatigue strain-controlled	RT-450		1, 3, 9	150, 250, 350	Tirr				
Fatigue creep	RT-400 RT-400	Stress and strain controlled							
Fracture toughness	RT-400	Elastic-plastic fracture toughness	1, 3, 9	150, 250, 350, 450	RT, Tirr	Linear-elastic and elastic-plastic fracture toughness			
Fatigue crack growth	RT-400		1, 3, 9	150, 250, 350	RT, Tirr				
Creep Crack Growth	300, 350								

W MPH – Baseline material

ITER grade tungsten

- Elongated grain microstructure
- Grain size number:
 - 3 or finer, ASTM E112
- Density: ≥19.0 g/cm³, ASTM B311
- Purity: ≥ 99.94%

...

Vickers hardness: ≥410 HV30, ASTME92 Hirai et al., Fus. Eng. Design 125 (2017)

Identified tungsten materials

- Forged bar, PLANSEE SE, Austria
- Rolled plate, A.L.M.T. Corp., Japan

Anisotropic microstructure/properties

J.-H. You et al., Fus. Eng. Design 164 (2021)

W MPH – Tensile properties and best estimate trend curves

ITER grade tungsten
 Forged bar, PLANSEE SE, Austria

M. Wirtz et al., Nucl. Fusion 57 (2017) 066018
M. Wirtz et al., Phys. Scr. T167 (2016) 014015
C. Yin et al, Int. J. Refract. Met. Hard Mater. 75
(2018) 153-162

- Generation of preliminary "best estimate" trend curves
- Large scatter in low-T data due to inherent brittleness ⇒ Weibull analysis of fracture strength

W MPH – fracture toughness

E. Gaganidze et al., JNM 556 (2021) 153200

Superior behavior of ITER & CHW A.L.M.T plates over forged bar IGP W in terms of DBTT and high T behavior

Future focus on uniaxially rolled A.L.M.T. plate

Note:

- Trend with dose mostly attributed to Re content in literature •
- Measurement Temp/conductivity relationship inverts at high dose/high irradiation temperature
- Even at high irradiation temp, data still extremely limited

W MPH – Testing needs

Reference material ITER grade plate from A.L.M.T

				Tungsten (sr: stress relieved, rc: recrystallized)						
		Unir	radiated			Irradiate	d			
		Temperature range [°C]	note	Irradiation dose [dpa]	Irradiation temperature [°C]	Testing Temperature [°C]	note			
perty	Tensile properties	sr: 300-1200 rc: 300-2000	Need for true stress vs. true strain data	0.5, 1, 3 (4)		RT, Tirr	Basic input parameter for simulation works			
	sr: Creep	sr: 600-1200		0.5, 1, 3 (4)		Tirr	post irradiation creep			
		rc: 600-1800		3 (4)	sr: 600, 800, 1200	Tirr	interrupted irradiation creep			
	Bending sr: I	sr: RT-300	No data for DEMO	1		Tirr	No data			
brd		rc: RT-300	relevant tungsten grades							
chanica	Charpy impact	RT, iterative approach to identify DBTT		0.5, 1, 3 (4)	rc: 800, 1300	Iterative approach to identify DBTT				
В В	Fatigue strain	sr: 300-1200	No data for DEMO	0.5, 1, 3 (4)		600, Tirr	No data for DEMO			
	controlled	rc: 300-2000	relevant tungsten grades			(Tirr)	relevant tungsten grades			
	Fracture	sr: 300-1200	K _{IC} and DBTT			RT, Tirr	K _{IC} and DBTT			
	toughness	rc: 300-2000	J-R curve	0.5, 1, 3 (4)			J-R curve			
	Fatigue crack	sr: 300-1200	Temperature effects	0513(4)		RT Tirr	No data			
	growth	rc: 300-2000		0.5, 1, 5 (4)		NI, IIII				

Summary

- Development of EUROfusion Material Databases (MD) and Material Properties Handbook (MPH) chapters on EUROFER97, CuCrZr and W is well advanced
- MPH includes most up-to-date qualified material data

EUROFER97:

- The database gaps are identified; Closing gaps in the unirradiated and fission n-irradiated states is in progress
- Irradiation facility with fusion relevant neutron spectrum is mandatory for the assessment of He effects

CuCrZr:

- Scarce data for baseline CuCrZr in SAcwA+HRP condition
- The gaps are identified and the experimental campaign is in progress

W:

- Available data in the unirradiated state is scattered due to different grades (and orientation) of W
- Effects of orientation and heat treatment (stress relieved and recrystallized) are not systematically assessed
- The gaps are identified and the experimental campaign is in progress for ITER specification W

Thank you for your attention!

Institute for Applied Materials