

Top-quark loops for precision Higgs physics

Young Scientists Meeting of the CRC TRR 257 – 18 Oct 2023 Marco Vitti – KIT, TTP and IAP

Outline

- 1. Precision Higgs Physics at the LHC
- 2. Example: $gg \rightarrow XY @$ NLO QCD
- 3. Top-quark loops via pT expansion

Work in collaboration with: L. Alasfar, L. Bellafronte, G. Degrassi, P.P. Giardino, R. Gröber, X. Zhao

Higgs Physics at the LHC

Does the discovered Higgs boson behave as the SM predicts?

What we know after Run2 (139 fb^{-1})

- CP-even scalar
- Mass measured with permille precision
- Production and decay channels all compatible with SM predictions
- Experimental uncertainties in the 10-20% range

What next? Projections for High-Luminosity LHC

Systematic uncertainties will play important role

Theory uncertainties need to be reduced

GOAL : percent accuracy

[THIS TALK] Missing higher orders in perturbative calculations

(multi-)loop Feynman diagrams

Other theory uncertainties

Parametric uncertainties

PDF determination

Matching with parton showers

Where to look for improvements?

• Les Houches precision wishlist [Huss et al. - 2207.02122]

Table 1. Precision wish list: Higgs boson final states. $N^{\nu}LO_{QCD}^{(VBF*)}$ means a calculation using the structure function approximation. V = W, Z.

Process	Known	Desired			
pp ightarrow H	N ³ LO _{HTL} NNLO (2) N ^(1,1) LO ^(HTL) NLO _{QCD}	N ⁴ LO _{HTL} (incl.) NNLO ^(h,c) _{QCD}			
$pp \rightarrow H + j$	NNLO _{HTL} NLO _{QCD} N ^(1,1) LO _{QCD⊗EW}	$\text{NNLO}_{\text{HTL}} \otimes \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}$			
$pp \rightarrow H + 2j$	$\begin{array}{c c} NLO_{HTL} & \otimes LO_{QCD} \\ N^3LO & _{QCD}^{(VBF*)} & (incl.) \\ NNLO & _{QCD}^{(VBF*)} \\ NLO & _{WBF}^{(VBF)} \\ NLO & _{EW}^{(VBF)} \end{array}$	$\begin{array}{l} \text{NNLO}_{HTL} \otimes \text{NLO}_{QCD} + \text{NLO}_{EW} \\ \text{N}^{2}\text{LO} \begin{array}{c} \text{(VBF^{3})} \\ \text{QCD} \end{array} \\ \text{NNLO} \begin{array}{c} \text{(VBF)} \\ \text{QCD} \end{array} \end{array}$			
$pp \rightarrow H + 3j$	NLO _{HTL} NLO ^(VBF) _{QCD}	$\rm NLO_{QCD} + \rm NLO_{EW}$			
$pp \rightarrow VH$	$\frac{\text{NNLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}{\text{NLO}_{gg \rightarrow HZ}^{(t,b)}}$				
$pp \rightarrow VH + j$	NNLO _{QCD} NLO _{QCD} + NLO _{EW}	$NNLO_{QCD} + NLO_{EW}$			
$pp \rightarrow HH$	N ³ LO _{HTL} ⊗ NLO _{QCD}	NLO _{EW}			
****	VRF*) ~ · ·				

Table 3. Precision wish list: vector boson final states. V = W, Z and $V', V'' = W, Z, \gamma$. Full leptonic decays are understood if not stated otherwise.

Process	Known	Desired		
$pp \rightarrow V$	${f N}^3 LO_{QCD} {f N}^{(1.1)} LO_{QCD\otimes EW} {f N} LO_{EW}$	$\begin{array}{l} N^{3}LO_{QCD}+N^{(1,1)}LO_{QCD\otimes EW}\\ N^{2}LO_{EW} \end{array}$		
$pp \rightarrow VV'$	$NNLO_{QCD} + NLO_{EW}$ + NLO_{QCD} (gg channel)	$\label{eq:NLO_QCD} \begin{array}{l} (gg \ channel, \ w/ \ massive \ loops) \\ N^{(1,1)}LO_{QCD\otimes EW} \end{array}$		
$pp \rightarrow V + j$	$NNLO_{QCD} + NLO_{EW}$	hadronic decays		
$pp \rightarrow V + 2j$	$\label{eq:loss} \begin{array}{l} NLO_{QCD} + NLO_{EW} \left(QCD \right. \\ component \right) \\ NLO_{QCD} + NLO_{EW} \left(EW \right. \\ component \right) \end{array}$	NNLO _{QCD}		

Where to look for improvements?

• Les Houches precision wishlist [Huss et al. - 2207.02122]

Table 1. Precision wish list: Higgs boson final states. $N^{\nu}LO_{QCD}^{(VBF*)}$ means a calculation using the structure function approximation. V = W, Z.

Process	Known	Desired
pp ightarrow H	$\begin{array}{l} N^{3}LO_{HTL} \\ NNLO \begin{array}{c} (\ell) \\ QCD \end{array} \\ N^{(1,1)}LO_{QCD \otimes EW}^{(HTL)} \\ NLO_{QCD} \end{array}$	$N^{\dagger}LO_{HTL}$ (incl.) NNLO $_{QCD}^{(b,c)}$
$pp \rightarrow H + j$	NNLO _{HTL} NLO _{QCD} N ^(1,1) LO _{QCD⊗EW}	$NNLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$
$pp \rightarrow H + 2j$	$\begin{array}{l} \text{NLO}_{\text{HTL}} & \otimes \text{LO}_{\text{QCD}} \\ \text{N}^3 \text{LO} & \frac{(^{\text{VBF}*)}}{\text{QCD}} & (\text{incl.}) \\ \text{NNLO} & \frac{(^{\text{VBF}*)}}{\text{QCI}} \\ \text{NLO} & \frac{(^{\text{VBF}*)}}{\text{EW}} \end{array}$	$\begin{array}{l} NNLO_{HTL} \otimes NLO_{QCD} + NLO_{EW} \\ N^{3}LO \begin{array}{c} (^{VBF*}_{QCD} \\ QCD \end{array} \\ NNLO \begin{array}{c} (^{VBF*}_{QCD} \end{array} \end{array}$
$pp \rightarrow H + 3j$	NLO _{HTL} NLO ^(VBF) OCD	$NLO_{QCD} + NLO_{EW}$
$pp \rightarrow VH$	$\frac{\text{NNLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}{\text{NLO}_{gg \rightarrow HZ}^{(t,b)}}$	
$pp \rightarrow VH + j$	NNLO _{COD} + NLO _{DOV}	
$pp \rightarrow HH$	N ³ LO _{HTL} ⊗ NLO _{QCD}	NLO _{EW}

Table 3. Precision wish list: vector boson final states. V = W, Z and $V', V'' = W, Z, \gamma$. Full leptonic decays are understood if not stated otherwise.

Process	Known	Desired		
$pp \rightarrow V$	N ³ LO _{QCD} N ^(1,1) LO _{QCD⊗EW} NLO _{EW}	$\begin{array}{l} N^{3}LO_{QCD}+N^{(1,1)}LO_{QCD\otimes EW}\\ N^{2}LO_{EW} \end{array}$		
$pp \rightarrow VV'$	$NNLO_{QCD} + NLO_{FW}$ + NLO_{QCD} (gg channel)	$ \begin{array}{l} NLO_{QCD} \ (gg \ channel, \ w/ \ massive \ loops) \\ N^{(1,D}LO_{QCD\otimes EW} \end{array} $		
$pp \rightarrow V + j$	NILLO _{QCD} NLO _{EW}	hadronic decays		
$pp \rightarrow V + 2j$	$\label{eq:linear} \begin{array}{l} NLO_{QCD} + NLO_{EW} \left(QCD \\ component \right) \\ NLO_{QCD} + NLO_{EW} \left(EW \\ component \right) \end{array}$	NNLO _{QCD}		

Gluon-initiated 2 → 2 processes Two-loop diagrams with massive internal lines Main problem in the NLO calculation Multi-scale $(m_z, m_{\rm H}, m_t, s, t)$

two-loop integrals No full analytic results

 $gg \to ZH$

Solutions

- Exact results
- Demanding in terms of computing resources and time
- Issues with flexibility

Analytic Approximations: exploit hierarchies of masses/kinematic invariants

Reduce the number of scales in Feynman integrals

Proliferation of integrals

Restricted to specific phase-space regions

Limit $m_t \rightarrow \infty$

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke - 1211.50]

Small-mass expansion: $m_Z, m_H \rightarrow 0$ Large mass expansion: add finite top-mass effects [Wang, Xu, Xu, Yang - 2107.08206] [Hasselhuhn, Luthe, Steinhauser - 1611.05881]

High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ [Davies, Mishima, Steinhauser - 2011.12314]

D pT expansion: $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV – 2103.06225]

Solutions

- Exact results
- Demanding in terms of computing resources and time
- Issues with flexibility

Analytic Approximations: exploit hierarchies of masses/kinematic invariants

Reduce the number of scales in Feynman integrals
 Proliferation of integrals

Restricted to specific phase-space regions

Limit $m_t \rightarrow \infty$

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke - 1211.50]

Large mass expansion: add finite top-mass effects Small-mass expansion: $m_Z, m_H \rightarrow 0$ [Hasselhuhn, Luthe, Steinhauser - 1611.05881]

High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ [Davies, Mishima, Steinhauser - 2011.12314] **DT expansion:** $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV – 2103.06225

pT Expansion - Calculation Overview

- 1. Generation of Feynman diagrams O(100 diags) (FeynArts [Hahn 0012260])
- 2. Lorentz decomposition of the amplitude: **projectors** and **scalar form factors** (FeynCalc [Mertig et al. ('91); Shtabovenko et al. 1601.01167]): contractions, Dirac traces...

$$\mathcal{A}_{\mu\nu\rho} = \sum_{i=1}^{6} \mathcal{P}_{\mu\nu\rho}^{(i)} F^{(i)} \qquad \qquad F^{(i)} = \sum_{i=1}^{n} C^{(i)} I^{(i)}(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2)$$

- 3. Expansion of the form factors in the limit of small pT
- Decomposition of scalar integrals using integration-by-parts (IBP) identities (LiteRed [Lee - 1310.1145])
- 5. Evaluation of master integrals

Steps implemented in Mathematica code on a desktop machine

pT Expansion - Details

We assume the limit of a forward kinematics

$$g(p_1)$$
 000000000
 $g(p_2)$ 00000000
 $H(p_4)$

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

Then Taylor-expand the form factors in the ratios

$$\frac{m_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$
 $\frac{p_T^2}{4m_t^2} \ll 1$

Expansion at integrand level

Now scalar loop integrals depend on fewer scales $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \rightarrow I'(\hat{s}, \hat{t}, m_t^2)$

The new scalar integrals are decomposed in MIs using IBP relations The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \rightarrow I'(\hat{s}, \hat{t}, m_t^2) \rightarrow MI(\hat{s}/m_t^2)$ S2 MIs already known in the literature

SAME MIS FOR $gg\!\rightarrow\!HH$, $gg\!\rightarrow\!ZH,\,gg\!\rightarrow\!ZZ$

pT Expansion - Details

• We assume the limit of a **forward kinematics**

$$g(p_1)$$
 000000000 $Z(p_3)$
 $g(p_2)$ 00000000 $H(p_4)$

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

Then Taylor-expand the form factors in the ratios

$$\frac{m_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$

$$\frac{p_T^2}{4m_t^2} \ll 1$$

Expansion at integrand level

Now scalar loop integrals depend on fewer scales $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \rightarrow I'(\hat{s}, \hat{t}, m_t^2)$

The new scalar integrals are decomposed in MIs using IBP relations The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \rightarrow I'(\hat{s}, \hat{t}, m_t^2) \rightarrow \text{MI}(\hat{s}/m_t^2)$ 52 MIs already known in the literature

SAME MIS FOR $gg\!\rightarrow\!HH$, $gg\!\rightarrow\!ZH,\,gg\!\rightarrow\!ZZ$

pT Expansion - Details

We assume the limit of a **forward kinematics**

$$g(p_1)$$
 $Z(p_3)$
 $g(p_2)$ $U(p_2)$ $U(p_3)$ $H(p_4)$

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

Then Taylor-expand the form factors in the ratios

$$\frac{m_{H}^{2}}{\hat{s}}, \frac{m_{Z}^{2}}{\hat{s}}, \frac{p_{T}^{2}}{\hat{s}} \ll 1 \qquad \qquad \frac{p_{T}^{2}}{4m_{t}^{2}} \ll 1$$

$$\frac{p_T^2}{4m_t^2} \ll 1$$

Expansion at integrand level

Now scalar loop integrals depend on fewer scales $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$

The new scalar integrals are decomposed in MIs using IBP relations The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to MI(\hat{s}/m_t^2)$

52 MIs already known in the literature SAME MIS FOR $gg \rightarrow HH$, $gg \rightarrow ZH$, $gg \rightarrow ZZ$

Comparing Validity Ranges

Comparing Validity Ranges

Comparing Validity Ranges

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225]

Merging pT and HE expansions at NLO

Improve the convergence of a series expansion by matching the coefficients of the **Pade approximant** [m/n] [e.g. Fleisher, Tarasov ('94)]

$$f(x) \stackrel{x \to 0}{\simeq} c_0 + c_1 x + \dots + c_q x^q \qquad f(x) \simeq [m/n](x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{1 + b_1 x + \dots + b_n x^n} \quad (q = m + n)$$

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225] For each FF we merged the following results

- pT exp improved by [1/1] Padé
- HE exp improved by [6/6] Padé
- Padé results are stable and comparable in the region $|\hat{t}| \sim 4m_t^2 \rightarrow \text{can switch without loss of}$ accuracy (% level or below)
- Evaluation time for a phase-space point below 0.1 $s \Rightarrow$ suitable for Monte Carlo

Full NLO QCD Results

Inclusive cross section

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K\!=\!\sigma_{NLO}/\sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$		$118.6^{+16.7\%}_{-14.1\%}$		1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t {=} M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

NLO corrections are the same size as LO $(K\sim 2)$

 Scale uncertainties reduced by 2/3 wrt LO
 Agreement with independent calculations [Wang et al. - 2107.08206] [Chen et al. - 2204.05225]

Top mass scheme uncertainty

Take deviations of MS scheme wrt OS result as top mass scheme uncertainty (used for HH production in [Baglio et al. - 1811.05692, 2003.03227])

Analytic results \rightarrow change of top mass scheme is straightforward

$$F_i^{NLO,\overline{\text{MS}}} = F_i^{NLO,\text{OS}} - \frac{1}{4} \frac{\partial F_i^{LO}}{\partial m_t^2} \Delta_{m_t^2} \qquad \Delta_{m_t^2} = 2m_t^2 C_F \left[-4 + 3\log\left(\frac{m_t^2}{\mu^2}\right) \right]$$

[Degrassi, Gröber, MV, Zhao - 2205.02769]

 $gg \to ZZ$

$gg \rightarrow ZZ$ and Higgs Physics

Destructive interference between $qq \rightarrow H^* \rightarrow ZZ$ and $qq \rightarrow ZZ$ in the off-shell region

 $2 \operatorname{Re} \left(\operatorname{Re} \left($

Relevant for indirect measurements of Higgs total width

[Kauer, Passarino – 1206.4803] [Caola, Melnikov – 1307.4935] [Campbell. Ellis, Williams -1311.3589]

Top loops are dominant in off-shell region

Use pT expansion for the two-loop box diagrams [Degrassi, Gröber, MV – in preparation]

Next step → combine pT and HE expansions [Davies et al. - 2002.05558]

Conclusions

- Higgs precision measurements call for improved theoretical predictions
- $2 \rightarrow 2$ processes with **massive** loops are hard to compute
- Analytic approximations are useful: flexibility and efficiency
- pT and high-energy expansions can be combined

Outlook

- Comparing pT expansion and $t \rightarrow 0$ expansion [Davies, Mishima, Schönwald, Steinhauser - 2302.01356]
- Application to 3-loop diagrams for NNLO QCD corrections
- **EW** corrections to $2 \rightarrow 2$ processes New master integrals

Thank you for your attention

Backup

Third generation gives dominant contribution [Kniehl ('90) - Dicus, Kao ('88)]

 \square $\mathcal{O}(\alpha_{s^2})$ correction to $pp \rightarrow ZH$ cross section

NNLO suppression wrt to $q\bar{q} \rightarrow ZH$ but gluon luminosity higher at LHC Contributes to about 6% of $\sigma(pp \rightarrow ZH)$ for $\sqrt{s} = 14$ TeV [Cepeda et al. - 1902.00134]

Only LO included in MC → scale variation leads to 25% relative uncertainties

NLO corrections expected to be large in gg processes (e.g. H, HH)

\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}$ [pb]	$\Delta_{\rm scale}$ [%]	$\Delta_{\mathrm{PDF}\oplus\alpha_{\mathrm{s}}}$ [%]
13 14	0.123 0.145	$^{+24.9}_{-18.8}$ $^{+24.3}_{-19.6}$ $^{+25.3}_{+25.3}$	$4.37 \\ 7.47$
27	0.526	-18.5	5.85

LO Validation

Karlsruhe Institute of Technology

- Three orders sufficient for very good accuracy
- **Reliable results for** $M_{ZH} \lesssim 700 \text{ GeV}$
- **For** $M_{ZH} \gtrsim 700 \text{ GeV}$ the assumption

$$p_T^2 \ll 4m_t^2$$

can be violated \Rightarrow the p_T expansion **diverges** (but wait a few slides...)

pT expansion: example

1) Consider a **one-loop** box integral

$$\int d^D q \ \frac{(q^2)^{n_1} (q \cdot p_1)^{n_2} (q \cdot p_2)^{n_3} (q \cdot p_3)^{n_4}}{(q^2 - m_t^2)[(q + p_2)^2 - m_t^2][(q - p_1 - p_3)^2 - m_t^2][(q - p_1)^2 - m_t^2]}$$

2) Focus on the p3-dependent part; explicit the transverse component wrt beam axis

$$\frac{(q \cdot p_3)^{n_4}}{[(q - p_1 - p_3)^2 - m_t^2]} \qquad p_3^{\mu} = \frac{u'}{s'} p_1^{\mu} + \frac{t'}{s'} p_2^{\mu} + r_{\perp}^{\mu} \\ = -p_1^{\mu} - \frac{t'}{s'} (p_1 - p_2)^{\mu} + \frac{\Delta_m}{s'} p_1^{\mu} + r_{\perp}^{\mu}$$

3) In the forward limit $p_3^\mu\simeq -p_1^\mu$

$$\int d^D q \ \frac{(q^2)^{n_1} (q \cdot p_1)^{n'_2} (q \cdot p_2)^{n'_3} (q \cdot r_\perp)^{n'_4}}{(q^2 - m_t^2)^{l_1} [(q + p_2)^2 - m_t^2] [(q - p_1)^2 - m_t^2]}$$

4) LiteRed searches for MIs with $n'_4 = 0 \rightarrow$ the MIs do not depend on p_T^2

pT expansion: example

1) Consider a **one-loop** box integral

$$\int d^D q \, \frac{(q^2)^{n_1} (q \cdot p_1)^{n_2} (q \cdot p_2)^{n_3} (q \cdot p_3)^n}{(q^2 - m_t^2)[(q + p_2)^2 - m_t^2][(q - p_1 - p_3)^2 - m_t^2][(q - p_1)^2 - m_t^2]}$$

2) Focus on the p3-dependent part; explicit the transverse component wrt beam axis

$$\frac{(q \cdot p_3)^{n_4}}{[(q - p_1 - p_3)^2 - m_t^2]} \qquad p_3^{\mu} = \frac{u'}{s'} p_1^{\mu} + \frac{t'}{s'} p_2^{\mu} + r_{\perp}^{\mu} \\ = -p_1^{\mu} - \frac{t'}{s'} (p_1 - p_2)^{\mu} + \frac{\Delta_m}{s'} p_1^{\mu} + r_{\perp}^{\mu}$$

3) In the forward limit $p_3^\mu\simeq -p_1^\mu$

$$\int d^D q \ \frac{(q^2)^{n_1} (q \cdot p_1)^{n'_2} (q \cdot p_2)^{n'_3} (q \cdot r_\perp)^{n'_4}}{(q^2 - m_t^2)^{l_1} [(q + p_2)^2 - m_t^2] [(q - p_1)^2 - m_t^2]}$$

4) LiteRed searches for MIs with $n'_4 = 0 \rightarrow$ the MIs do not depend on p_T^2

Master Integrals

50 MIs expressed in terms of Generalized Polylogarithms (GPLs)

[Bonciani, Mastrolia, Remiddi ('03) - Aglietti et al. ('06) - Anastasiou et al. ('06) - Caron-Huot, Henn ('14) - Becchetti, Bonciani ('17) - Bonciani, Degrassi, Vicini ('10)]

Two elliptic integrals [von Manteuffel, Tancredi ('17)]

Semi-analytical evaluation implemented in FORTRAN routine

[Bonciani, Degrassi, Giardino, Gröber ('18)]

