

Top-quark loops for precision Higgs physics

Young Scientists Meeting of the CRC TRR 257 – 18 Oct 2023 Marco Vitti – KIT, TTP and IAP

Outline

- 1. Precision Higgs Physics at the LHC
- 2. Example: *gg→XY* @ NLO QCD
- 3. Top-quark loops via pT expansion

Work in collaboration with: **L. Alasfar, L. Bellafronte, G. Degrassi, P.P. Giardino, R. Gröber, X. Zhao**

Higgs Physics at the LHC

Does the discovered Higgs boson behave as the SM predicts?

What we know after Run2 (139 fb^{-1})

- CP-even scalar
- **Mass measured with permille precision**
- **Production and decay channels all compatible** with SM predictions
- **Experimental uncertainties in the 10-20% range**

What next? Projections for High-Luminosity LHC

Systematic uncertainties will play important role

Theory uncertainties need to be reduced

GOAL : **percent accuracy**

[THIS TALK] Missing higher orders in perturbative calculations

(multi-)loop Feynman diagrams

Other theory uncertainties

Parametric uncertainties

PDF determination

Matching with parton showers

Where to look for improvements?

● Les Houches **precision wishlist** [Huss et al. - 2207.02122]

Table 1. Precision wish list: Higgs boson final states. $N^{\text{H}}LO_{\text{QCD}}^{(\text{VBF+})}$ means a calculation using the structure function approximation. $V = W$, Z.

Table 3. Precision wish list: vector boson final states. $V = W$, Z and V' , $V'' = W$, Z, γ . Full leptonic decays are understood if not stated otherwise.

Where to look for improvements?

● Les Houches **precision wishlist** [Huss et al. - 2207.02122]

Table 1. Precision wish list: Higgs boson final states. $N^{\text{t}}LO_{\text{OCD}}^{(\text{VBF*})}$ means a calculation using the structure function approximation. $V = W$, Z.

Table 3. Precision wish list: vector boson final states. $V = W$, Z and V' , $V'' = W$, Z, γ . Full leptonic decays are understood if not stated otherwise.

Gluon-initiated 2→2 processes Two-loop diagrams with **massive** internal lines

Main problem in the NLO calculation Multi-scale $\left(m_{_Z}\!\!,m_{_H}\!\!,m_{_t}\!\!,s,t\right)$

> two-loop integrals No full analytic results

gg→ZH

Solutions

- **●Exact results**
- Demanding in terms of computing resources and time
- **Olssues with flexibility**

Analytic Approximations: exploit **hierarchies** of masses/kinematic invariants

 \bullet Reduce the number of scales in Feynman integrals \bullet Proliferation of integrals

● Restricted to specific phase-space regions

Limit $m_t \to \infty$

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke - 1211.50]

[Wang, Xu, Xu, Yang - 2107.08206] **Large mass expansion: add finite top-mass effects** [Hasselhuhn, Luthe, Steinhauser - 1611.05881]

High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ [Davies, Mishima, Steinhauser - 2011.12314]

- **|Small-mass expansion:** $m_Z, m_H \rightarrow 0$
	- **pT** expansion: $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV – 2103.06225]

Solutions

- **●Exact results**
- Demanding in terms of computing resources and time
- **Olssues with flexibility**

Analytic Approximations: exploit **hierarchies** of masses/kinematic invariants

 \bullet Reduce the number of scales in Feynman integrals \bullet Proliferation of integrals

● Restricted to specific phase-space regions

Limit $m_t \to \infty$

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke - 1211.50]

 $\sf I$ Small-mass expansion: $m_Z, m_H \to 0$ [Wang, Xu, Xu, Yang - 2107.08206] **Large mass expansion: add finite top-mass effects** [Hasselhuhn, Luthe, Steinhauser - 1611.05881]

I High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ [Davies, Mishima, Steinhauser - 2011.12314]

pT expansion: $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV – 2103.06225]

pT Expansion - Calculation Overview

- 1. Generation of Feynman diagrams O(100 diags) (FeynArts [Hahn 0012260])
- 2. Lorentz decomposition of the amplitude: **projectors** and **scalar form factors** (FeynCalc [Mertig et al. ('91) ; Shtabovenko et al. - 1601.01167]): contractions, Dirac traces...

$$
\mathcal{A}_{\mu\nu\rho} = \sum_{i=1}^{6} \mathcal{P}^{(i)}_{\mu\nu\rho} F^{(i)} \qquad F^{(i)} = \sum_{i=1}^{n} C^{(i)} I^{(i)}(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2)
$$

- 3. Expansion of the form factors in the limit of small pT
- 4. Decomposition of scalar integrals using integration-by-parts (IBP) identities (LiteRed [Lee - 1310.1145])
- 5. Evaluation of master integrals

Steps implemented in **Mathematica** code on a **desktop machine**

pT Expansion - Details

We assume the limit of a **forward kinematics**

$$
(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0
$$

 $g(p_1)$

 $g(p_2)$

Then Taylor-expand the form factors in the ratios

$$
\frac{n_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1 \qquad \qquad \frac{p_T^2}{4m_t^2} \ll 1
$$

Expansion at integrand level $Z(p_3)$

Now scalar loop integrals depend on fewer scales $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \rightarrow I'(\hat{s}, \hat{t}, m_t^2)$

The new scalar integrals are decomposed in MIs using IBP relations

■ The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale

 $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to MI(\hat{s}/m_t^2)$

■ 52 MIs already known in the literature SAME MIs FOR $qq \rightarrow HH$, $qq \rightarrow ZH$, $qq \rightarrow ZZ$

pT Expansion - Details

We assume the limit of a **forward kinematics**

$$
g(p_1)
$$
 00000000 $Z(p_3)$
\n $g(p_2)$ 00000000 $H(p_4)$

$$
(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0
$$

Then Taylor-expand the form factors in the ratios

$$
\left\lceil\frac{m_H^2}{\hat s},\frac{m_Z^2}{\hat s},\frac{p_T^2}{\hat s}\ll 1\right\rceil
$$

$$
\frac{p_T^2}{4m_t^2}\ll 1
$$

Expansion at integrand level

Now scalar loop integrals depend on fewer scales $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \rightarrow I'(\hat{s}, \hat{t}, m_t^2)$

The new scalar integrals are decomposed in MIs using IBP relations ■ The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to MI(\hat{s}/m_t^2)$

■ 52 MIs already known in the literature SAME MIs FOR $qq \rightarrow HH$, $qq \rightarrow ZH$, $qq \rightarrow ZZ$

pT Expansion - Details

We assume the limit of a **forward kinematics**

$$
(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0
$$

Then Taylor-expand the form factors in the ratios

$$
\frac{m_H^2}{\hat s},\frac{m_Z^2}{\hat s},\frac{p_T^2}{\hat s}\ll 1
$$

$$
\frac{p_T^2}{4m_t^2}\ll 1
$$

 $g(p_1)$

 $g(p_2)$

Expansion at integrand level $Z(p_3)$

Now scalar loop integrals depend on fewer scales

 $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \rightarrow I'(\hat{s}, \hat{t}, m_t^2)$

The new scalar integrals are decomposed in MIs using IBP relations ■ The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to MI(\hat{s}/m_t^2)$ ■ 52 MIs already known in the literature

SAME MIs FOR $gg \rightarrow HH$, $gg \rightarrow ZH$, $gg \rightarrow ZZ$

Comparing Validity Ranges

Comparing Validity Ranges

Comparing Validity Ranges

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225]

Merging pT and HE expansions at NLO

Improve the convergence of a series expansion by matching the coefficients of the **Pade approximant** [m/n] [e.g. Fleisher, Tarasov ('94)]

$$
f(x) \stackrel{x \to 0}{\simeq} c_0 + c_1 x + \dots + c_q x^q \qquad f(x) \simeq [m/n](x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{1 + b_1 x + \dots + b_n x^n} \quad (q = m + n)
$$

For each FF we merged the following results [Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225]

- pT exp improved by [1/1] Padé
- HE exp improved by [6/6] Padé
- **Padé results are stable and comparable in the** region $|\hat{t}|$ ∼4 m_t^2 → can switch without loss of accuracy (% level or below)
- Evaluation time for a phase-space point below 0.1 s \Rightarrow suitable for Monte Carlo

Full NLO QCD Results

Inclusive cross section

NLO corrections are the same size as LO (*K*~2)

Scale uncertainties reduced by 2/3 wrt LO **Agreement with independent calculations** [Wang et al. - 2107.08206] [Chen et al. - 2204.05225]

Top mass scheme uncertainty

Take deviations of $\overline{\text{MS}}$ scheme wrt OS result as top mass scheme uncertainty (used for HH production in [Baglio et al. - 1811.05692, 2003.03227])

■Analytic results → change of top mass scheme is straightforward

$$
F_i^{NLO,\overline{\rm MS}}=F_i^{NLO,\rm OS}-\frac{1}{4}\frac{\partial F_i^{LO}}{\partial m_t^2}\Delta_{m_t^2} \qquad \Delta_{m_t^2}=2m_t^2C_F\left[-4+3\log\left(\frac{m_t^2}{\mu^2}\right)\right]
$$

[Degrassi, Gröber, MV, Zhao - 2205.02769]

gg→ZZ

gg→ZZ **and Higgs Physics**

Destructive interference between $q\bar{q} \rightarrow H^* \rightarrow ZZ$ and $q\bar{q} \rightarrow ZZ$ in the off-shell region

 2 Re ($\sqrt{\frac{1}{2}}$) $g \sim$ Z Z $t \downarrow$

Relevant for indirect measurements of Higgs total width

[Kauer, Passarino – 1206.4803] [Caola, Melnikov – 1307.4935] [Campbell. Ellis, Williams - 1311.3589]

Top loops are dominant in off-shell region

Use pT expansion for the two-loop box diagrams [Degrassi, Gröber, MV – in preparation]

Next step \rightarrow combine pT and HE expansions [Davies et al. - 2002.05558]

Conclusions

Higgs precision measurements call for improved theoretical predictions

- 2→2 processes with **massive** loops are hard to compute
- **Analytic approximations are useful: flexibility and efficiency**
- **Deapth** of and high-energy expansions can be combined

Outlook

Comparing pT expansion and $t\rightarrow 0$ expansion [Davies, Mishima, Schönwald, Steinhauser - 2302.01356]

Application to 3-loop diagrams for NNLO QCD corrections

EW corrections to $2 \rightarrow 2$ processes - New master integrals

Thank you for your attention

Backup

Third generation gives dominant contribution [Kniehl ('90) - Dicus, Kao ('88)]

 ${\cal O}(\,\alpha_s{}^2$) correction to $pp\!\rightarrow\! ZH$ cross section

NNLO suppression wrt to $q\bar{q} \to ZH$ but gluon luminosity higher at LHC ■ Contributes to about 6% of $\sigma(pp\to ZH)$ for $\sqrt{s}=14$ TeV [Cepeda et al. - 1902.00134]

 \blacksquare Only LO included in MC \rightarrow scale variation

leads to **25%** relative uncertainties

NLO corrections expected to be large in *gg* processes (e.g. *H, HH*)

LO Validation

- **Three orders sufficient for very good** accuracy
- Reliable results for $M_{ZH}\lesssim700\,\,{\rm GeV}$
- **For** $M_{ZH} \ge 700$ GeV the assumption

$$
p_T^2 \ll 4 m_t^2
$$

can be violated \Rightarrow the p_T expansion **diverges** (but wait a few slides...)

pT expansion: example

1) Consider a **one-loop** box integral

$$
\int d^Dq \frac{(q^2)^{n_1}(q \cdot p_1)^{n_2}(q \cdot p_2)^{n_3}(q \cdot p_3)^{n_4}}{(q^2 - m_t^2)[(q + p_2)^2 - m_t^2][(q - p_1 - p_3)^2 - m_t^2][(q - p_1)^2 - m_t^2]}
$$

2) Focus on the p3-dependent part; explicit the transverse component wrt beam axis

$$
\frac{(q \cdot p_3)^{n_4}}{[(q - p_1 - p_3)^2 - m_t^2]}
$$
\n
$$
p_3^{\mu} = \frac{u'}{s'} p_1^{\mu} + \frac{t'}{s'} p_2^{\mu} + r_{\perp}^{\mu}
$$
\n
$$
= -p_1^{\mu} - \frac{t'}{s'} (p_1 - p_2)^{\mu} + \frac{\Delta_m}{s'} p_1^{\mu} + r_{\perp}^{\mu}
$$
\nforward limit $n^{\mu} \sim -n^{\mu}$

3) In the forward limit $p_3^{\mu} \simeq -p_1^{\mu}$

$$
\int d^Dq\ \frac{(q^2)^{n_1}(q\cdot p_1)^{n_2'}(q\cdot p_2)^{n_3'}(q\cdot r_\perp)^{n_4'}}{(q^2-m_t^2)^{l_1}[(q+p_2)^2-m_t^2][(q-p_1)^2-m_t^2]}
$$

4) LiteRed searches for MIs with $n\,{}^{\prime}_{4}\!=\!0\,\, \rightarrow$ the MIs do not depend on

pT expansion: example

1) Consider a **one-loop** box integral

$$
\int d^Dq\ \frac{(q^2)^{n_1}(q\cdot p_1)^{n_2}(q\cdot p_2)^n f(q\cdot p_3)^n}{(q^2-m_t^2)[(q+p_2)^2-m_t^2][(q-p_1-p_3)^2-m_t^2][(q-p_1)^2-m_t^2]}
$$

2) Focus on the p3-dependent part; explicit the transverse component wrt beam axis

$$
\frac{(q \cdot p_3)^{n_4}}{[(q - p_1 - p_3)^2 - m_t^2]}
$$
\n
$$
p_3^{\mu} = \frac{u'}{s'} p_1^{\mu} + \frac{t'}{s'} p_2^{\mu} + r_{\perp}^{\mu}
$$
\n
$$
= -p_1^{\mu} - \frac{t'}{s'} (p_1 - p_2)^{\mu} + \frac{\Delta_m}{s'} p_1^{\mu} + r_{\perp}^{\mu}
$$
\n
$$
\Rightarrow \text{forward limit } n^{\mu} \sim n^{\mu}
$$

3) In the forward limit $p_3^{\mu} \simeq -p_1^{\mu}$

$$
\int d^Dq\ \frac{(q^2)^{n_1}(q\cdot p_1)^{n_2'}(q\cdot p_2)^{n_3'}(q\cdot r_\perp)^{n_4'}}{(q^2-m_t^2)^{l_1}[(q+p_2)^2-m_t^2][(q-p_1)^2-m_t^2]}
$$

4) LiteRed searches for MIs with $n\,{}^{\prime}_{4}\!=\!0\,\, \rightarrow$ the MIs do not depend on

Master Integrals

• 50 MIs expressed in terms of Generalized Polylogarithms (GPLs)

[Bonciani, Mastrolia, Remiddi ('03) - Aglietti et al. ('06) - Anastasiou et al. ('06) - Caron-Huot, Henn ('14) - Becchetti, Bonciani ('17) - Bonciani, Degrassi, Vicini ('10)]

Two elliptic integrals [von Manteuffel, Tancredi ('17)]

Semi-analytical evaluation implemented in FORTRAN routine

[Bonciani, Degrassi, Giardino, Gröber ('18)]

