

Numerical Multi-Loop Calculations with pySecDec

Anton Olsson

Institute for Theoretical Physics, Karlsruhe Institute of Technology

Recent pySecDec release: 2305.19768 (01.06.23)

The pySecDec collaboration:

Gudrun Heinrich, Stephen Jones, Matthias Kerner, Vitaly Magerya, AO, Johannes Schlenk

Previous pySecDec papers:

Comput. Phys. Commun. 273 (2022) 108267, [2108.10807] Comput. Phys. Commun. 240 (2019) 120–137, [1811.11720] Comput. Phys. Commun. 222 (2018) 313–326, [1703.09692]

Young Scientists Meeting of the CRC – Siegen – 17th October 2023

Outline

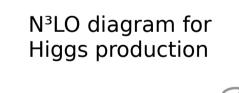
- Calculating scattering amplitudes when and why are loop integrals evaluated?
- Where does pySecDec fit in?
- Sector decomposition and contour deformation
- Latest release
 - Results and new features

Motivation

- The standard model is tested experimentally to a high level of precision
- For several processes, predictions are or will be limited by theoretical uncertainties

$$\mathcal{A}^{ ext{tot}} = \mathcal{A}^{ ext{LO}} + \mathcal{A}^{ ext{NLO}} + \mathcal{A}^{ ext{NNLO}} + \mathcal{A}^{ ext{N^3LO}} + \dots$$

- For Higgs production through gluon fusion (scale uncertainties): [CERN YR4]
 - NLO ~ 39%
 - NNLO ~ 20%
 - N³LO (HTL) ~ 3%



• If the (HL-)LHC reaches percent level precision, higher order contributions will be important

17 October 2023

Calculating A Scattering Amplitude

- Standard Workflow
 - **Generation:** Write amplitude as sum of Feynman diagrams
 - **Projection:** Project tensor structures onto scalar integrals
 - **Reduction:** Use IBP relations to find a basis of master integrals
 - **Evaluation:** Evaluate the master integrals
 - Analytical methods struggle with many loops and kinematic scales, resort to numerical methods
- Numerical methods include
 - Sector Decomposition (**pySecDec**, Fiesta5)
 - Numerical Differential Equations (DiffExp, AMFlow)
 - Tropical Sampling (Feyntrop)

What Is pySecDec?

- Documentation: 'Toolbox for numerical evaluation of dimensionally regularized parameter integrals'
- Mainly: Sector decomposition and produces an integral library
 - Several sector decomposition routines (iterative and geometric)
 - Several integrators available (Monte Carlo methods)
- Also:
 - Expansion By Regions (EBR) handles difficult kinematic limits
 - Optimized for amplitude evaluation (weighted sums)

Sector Decomposition – Basic Example

• 2-dimensional parameter integral with overlapping singularities

$$I = \int_0^1 dx \int_0^1 dy x^{-1-a\varepsilon} y^{-b\varepsilon} (x+y)^{-1}$$

• Integration range is split up into two sectors where the variables are ordered

$$I = \int_0^1 dx \int_0^1 dy x^{-1-a\varepsilon} y^{-b\varepsilon} (x+y)^{-1} [\Theta(x-y) + \Theta(y-x)]$$

- The integration range is remapped to the unit square (unit hypercube, in general)
 - 1st sector: y = xt
 - 2nd sector: x = yt

17 October 2023

Sector Decomposition – Basic Example

• Substituting y = xt and x = yt in the respective sectors:

$$I = \int_{0}^{1} dx x^{-1-(a+b)\varepsilon} \int_{0}^{1} dt t^{-b\varepsilon} (1+t)^{-1} + \int_{0}^{1} dy y^{-1-(a+b)\varepsilon} \int_{0}^{1} dt t^{-1-a\varepsilon} (1+t)^{-1}$$

Sector Decomposition – Pole Extraction

• Simple logarithmic divergence

$$\begin{split} &\int_{0}^{1} dx \, x^{-1-(a+b)\varepsilon} = \frac{-1}{(a+b)\varepsilon} \\ & \text{More general case: } I = \int_{0}^{1} dt \, t^{-1-\varepsilon} \mathcal{I}(t,\varepsilon) \text{ Expand around t} = 0: \\ & I = \frac{-1}{\varepsilon} \mathcal{I}(0,\varepsilon) + \int_{0}^{1} dt \, t^{-1-\varepsilon} [\mathcal{I}(t,\varepsilon) - \mathcal{I}(0,\varepsilon)] \end{split}$$

17 October 2023

•

Sector Decomposition – In General

• **Operates on**: Dimensionally regularized integrals in Feynman parameter space:

$$G(p^2, m^2, D) \sim \int_0^\infty \prod_{j=1}^N dx_j \delta(1 - \sum_{i=1}^N x_i) \frac{\mathcal{U}^{N-(L+1)D/2}}{\mathcal{F}(p^2, m^2)^{N-LD/2}}$$

• **Produces:** Laurent series in the regularization parameter:

$$G(p^2, m^2, D) \sim \sum_{\text{Sectors}} \sum_{n=-r}^{2L} C_n(p^2, m^2) \frac{1}{\varepsilon^n} + \mathcal{O}(\varepsilon^{r+1})$$

• Singularity structure completely factorized in the Laurent series!

Evaluating The Integrals

• Need to integrate the coefficients in the epsilon-expansion

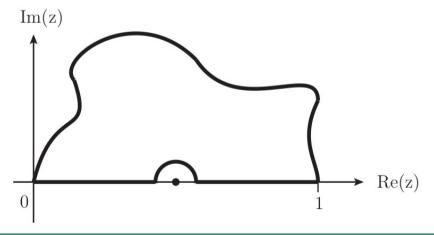
$$\sim \int_0^1 \prod_{j=1}^N dx_j \frac{1}{\mathcal{F}(\vec{x}, p^2, m^2)} = \int_0^1 \prod_{j=1}^N dx_j \mathcal{I}(\vec{x})$$

- Singularities at 0 are isolated by sector decomposition
- What if F vanishes inside the integration region? Contour deformation!
 - Cauchy's theorem allows avoiding singularities by closing a contour

Contour Deformation

• Cauchy's theorem:

$$0 = \oint_c \prod_{j=1}^N \mathrm{d} z_j \mathcal{I}(\vec{z}) = \int_0^1 \prod_{j=1}^N \mathrm{d} x_j \mathcal{I}(\vec{x}) + \int_\gamma \prod_{j=1}^N \mathrm{d} z_j \mathcal{I}(\vec{z}(\vec{x}))$$



17 October 2023

Contour Deformation

• Transform back to integration over the Feynman parameters

$$\int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} \,\mathcal{I}(\vec{x}) = -\int_{\gamma} \prod_{j=1}^{N} \mathrm{d}z_{j} \,\mathcal{I}(\vec{z}) = \int_{0}^{1} \prod_{j=1}^{N} \mathrm{d}x_{j} \,\det\left(\frac{\partial \vec{z}(\vec{x})}{\partial \vec{x}}\right) \mathcal{I}(\vec{z}(\vec{x}))$$

- How to chose the parametrization $\vec{z}(\vec{x})$?
 - Preserve the causal $i\delta$ prescription
 - Make sure no poles are enclosed by the contour
 - Some choices yield better numerical stability not fully understood yet

Parametrization Example

• Simple choice that fulfills these requirement (returning to F)

$$z_k(\vec{x}) = x_k - i \ \tau_k(\vec{x}) \ , \ \tau_k = \lambda \ x_k(1 - x_k) \ \frac{\partial \mathcal{F}(\vec{x})}{\partial x_k}$$

• Expanding around $\lambda = 0$

$$\mathcal{F}(\vec{z}(\vec{x})) = \mathcal{F}(\vec{x}) - i\lambda \sum_{j} x_{j}(1 - x_{j}) \left(\frac{\partial \mathcal{F}}{\partial x_{j}}\right)^{2} + \mathcal{O}(\lambda^{2})$$

17 October 2023

Latest Updates In pySecDec

- New QMC integrator called Disteval (distributed evaluation)
 - Up to an order of magnitude performance increase
- Median generating vectors for the QMC lattice rules
 - Avoid 'unlucky lattices'
- Automated detection and insertion of necessary extra regulators in EBR
 - Resolves spurious singularities introduced by EBR
- More practical amplitude evaluation

Performance Improvements

 p_4 p_3 10⁻² Disteval Qmc, GPU IntLib Qmc, GPU -----10⁻³ mRequested precision p_5 m10⁻⁴ · 10⁻⁵ p_1 p_2 10⁻⁶ 2-loop 'Hexa-triangle' 10⁻⁷ 5-point Massive propagators 10⁻⁸ • Massive legs 10² 10^{3} 10¹ 10⁴

Integration time [seconds]

17 October 2023

More Benchmarks

Karlsruhe Institute of Technology

	Accuracy:	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}
	DISTEVAL	$1.6\mathrm{s}$	$1.5\mathrm{s}$	$1.7\mathrm{s}$	$1.9\mathrm{s}$	$4.0\mathrm{s}$	$19\mathrm{s}$	$7.6\mathrm{m}$
	IntLib	$3.1\mathrm{s}$	$4.8\mathrm{s}$	$4.9\mathrm{s}$	$7.3\mathrm{s}$	$13.8\mathrm{s}$	$53\mathrm{s}$	$4.3\mathrm{m}$
	Ratio	1.9	3.1	2.8	3.9	3.4	2.9	0.6
	DISTEVAL	$5\mathrm{s}$	$5\mathrm{s}$	$9\mathrm{s}$	$37\mathrm{s}$	$2.3\mathrm{m}$	$5.4\mathrm{m}$	27.1 m
	IntLib	$9\mathrm{s}$	$17\mathrm{s}$	$41\mathrm{s}$	$163\mathrm{s}$	$9.6\mathrm{m}$	$16.0\mathrm{m}$	$27.3\mathrm{m}$
	Ratio	1.8	3.4	4.6	4.4	4.2	3.0	1.0
	DISTEVAL	$8\mathrm{s}$	$16\mathrm{s}$	$23\mathrm{s}$	$40\mathrm{s}$	$2.4\mathrm{m}$	$9.1\mathrm{m}$	19.9 m
	IntLib	$24\mathrm{s}$	$73\mathrm{s}$	$223\mathrm{s}$	$6.6\mathrm{m}$	$25.6\mathrm{m}$	$43.3\mathrm{m}$	$92.8\mathrm{m}$
	Ratio	3.0	4.6	9.7	9.9	10.5	4.8	4.7
	DISTEVAL	$5\mathrm{s}$	$8\mathrm{s}$	$11\mathrm{s}$	$0.71\mathrm{m}$	$3.7\mathrm{m}$	$18.5\mathrm{m}$	$1.1\mathrm{h}$
	IntLib	$45\mathrm{s}$	$65\mathrm{s}$	$88\mathrm{s}$	$3.2\mathrm{m}$	$11.3\mathrm{m}$	$74.8\mathrm{m}$	$4.6\mathrm{h}$
	Ratio	8.6	7.9	7.7	4.5	3.1	4.0	4.2

17 October 2023

Numerical Multi-Loop Calculations With pySecDec

16/17

Summary

- pySecDec evaluates dimensionally regularized parameter integrals
 - Needed for higher order scattering amplitudes
- Integrates numerically by implementing
 - Sector decomposition and contour deformation
 - Integration libraries based on QMC methods
- Latest release has brought performance increases up to an order of magnitude, and several other features

Summary

- pySecDec evaluates dimensionally regularized parameter integrals
 - Needed for higher order scattering amplitudes
- Integrates numerically by implementing
 - Sector decomposition and contour deformation
 - Integration libraries based on QMC methods
- Latest release has brought performance increases up to an order of magnitude, and several other features

Thank You!

17 October 2023