

Non-factorizable corrections to Higgs production in Vector Boson Fusion

Young Scientists Meeting, Siegen, 16 - 18 October 2023

Ming-Ming Long | In collaboration with Christian Brønnum-Hansen, Kirill Melnikov and Jérémie Quarroz

www.kit.edu

Outline

1. Introduction

- Higgs production
- Vector Boson Fusion

2. Beyond eikonal

- One-loop amplitudes
- Two-loop amplitudes

3. Running coupling effects

Fermion-bubble corrections

4. Summary

Introduction 000	Beyond eikonal	Running coupling effects	Summary 00
---------------------	----------------	--------------------------	---------------

Higgs production in VBF

large cross section

Summary 00

Higgs production in VBF

large cross section

•00

clean signature

Running coupling effects 0000

Summary 00

Higgs production in VBF

large cross section

•00

clean signature

HVV (anomalous) couplings; CP properties of Higgs; Higgs decays

lunning	coupling	effects
0000		

Summary 00

Introduction	Beyond eikonal	Running coupling effects	Summar
000	00000	0000	00

Running coupling effects

Summary 00

Running coupling effects

Summary 00

• Factorizable corrections are at $\mathcal{O}(\%)$ [Dreyer, Karlberg 2016]

00 0 0000 0000 00	Introduction	Bevond eikonal	Running coupling effects	Summarv
	00	00000	0000	00

Factorizable correct	tions are at $\mathcal{O}(\%)$	[Dreyer,	Karlberg 2016]

	$\sigma^{(extsf{13 TeV})}$ [pb]	$\sigma^{(extsf{14 TeV})}$ [pb]	$\sigma^{(100~{ m TeV})}$ [pb]
LO	$4.099^{+0.051}_{-0.067}$	$4.647^{+0.037}_{-0.058}$	$77.17^{+6.45}_{-7.29}$
NLO	$3.970^{+0.025}_{-0.023}$	$4.497^{+0.032}_{-0.027}$	73.90 ^{+1.73} -1.94
NNLO	$3.932^{+0.015}_{-0.010}$	$4.452^{+0.018}_{-0.012}$	$72.44 {}^{+0.53}_{-0.40}$
N3LO	$3.928 {}^{+0.005}_{-0.001}$	$4.448^{+0.006}_{-0.001}$	$72.34 {}^{+0.11}_{-0.02}$

Introduction ○○●	Beyond eikonal	Running coupling effects	Summary 00

- Factorizable corrections are at $\mathcal{O}(\%)$ [Dreyer, Karlberg 2016]
- Non-factorizable corrections are color-suppressed

Introduction	Beyond eikonal	Running coupling effects	Summary 00

- Factorizable corrections are at $\mathcal{O}(\%)$ [Dreyer, Karlberg 2016]
- Non-factorizable corrections are color-suppressed

	Introduction ooe	Beyond eikonal 00000	Running coupling effects	Summary 00
--	---------------------	-------------------------	--------------------------	---------------

- Factorizable corrections are at $\mathcal{O}(\%)$ [Dreyer, Karlberg 2016]
- Non-factorizable corrections are color-suppressed
- π^2 enhancement in non-factorizable contributions [Liu, Melnikov, Penin 2019]

Introduction	Beyond eikonal	Running coupling effects	Summary
000	00000	0000	00

- Factorizable corrections are at $\mathcal{O}(\%)$ [Dreyer, Karlberg 2016]
- Non-factorizable corrections are color-suppressed
- π^2 enhancement in non-factorizable contributions [Liu, Melnikov, Penin 2019]

How to go beyond eikonal approximation?

Introduction	Beyond eikonal	Running coupling effects	Summary
000	00000	0000	00

$$q(p_1) + q'(p_2) \rightarrow Q(p_3) + Q'(p_4) + H(p_H)$$

$$p_1 \longrightarrow p_3$$

$$W/Z$$

$$p_2 \longrightarrow p_4$$

Introduction	Beyond eikonal	Running coupling effects	Summary 00

$$q(p_1) + q'(p_2) \rightarrow Q(p_3) + Q'(p_4) + H(p_H)$$

$$p_1 \longrightarrow p_3$$

$$W/Z$$

$$W/Z$$

$$p_2 \longrightarrow p_4$$

Sudakov decomposition

$$p_i = \alpha_i p_1 + \beta_i p_2 + p_{i,\perp}, \quad i = 3, 4$$

Introduction	Beyond eikonal	Running coupling effects	Summary
000	●○○○○		00

$$q(p_1) + q'(p_2) \rightarrow Q(p_3) + Q'(p_4) + H(p_H)$$

$$p_1 \longrightarrow p_3$$

$$W/Z$$

$$W/Z$$

$$p_2 \longrightarrow p_4$$

Sudakov decomposition

$$p_i = \alpha_i p_1 + \beta_i p_2 + p_{i,\perp}, \quad i = 3, 4$$

$$\begin{array}{c} \text{using} \quad p_{3,4}^2 = 0 \Longrightarrow \beta_3 = \frac{\mathbf{p}_{3,\perp}^2}{s\alpha_3}, \alpha_4 = \frac{\mathbf{p}_{4,\perp}^2}{s\beta_4} \\ \text{Introduction} & \text{Beyond eikonal} \\ \bullet \circ \circ \circ \circ & \end{array}$$

6/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

Running coupling effects

Summary 00

$$p_1 \longrightarrow p_3$$

$$W/Z$$

$$W/Z$$

$$p_2 \longrightarrow p_4$$

 $q(p_1) + q'(p_2) \rightarrow Q(p_3) + Q'(p_4) + H(p_H)$

one has

$$\delta_3 \delta_4 \approx \frac{m_H^2 + \mathbf{p}_{H,\perp}^2}{s}, \quad \begin{cases} \delta_3 &= 1 - \alpha_3 \\ \delta_4 &= 1 - \beta_4 \end{cases}$$

Sudakov decomposition

$$p_i = \alpha_i p_1 + \beta_i p_2 + p_{i,\perp}, \quad i = 3, 4$$

$$\begin{array}{c} \text{using} \quad p_{3,4}^2 = 0 \Longrightarrow \beta_3 = \frac{\mathbf{p}_{3,\perp}^2}{s\alpha_3}, \alpha_4 = \frac{\mathbf{p}_{4,\perp}^2}{s\beta_4} \\ \underset{\circ \circ \circ \circ}{\overset{\text{Introduction}}{\overset{\text{Beyond eikonal}}{\circ}}} \end{array}$$

6/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

Running coupling effects

Summary

$$p_1 \longrightarrow p_3$$

$$W/Z$$

$$W/Z$$

$$P_2 \longrightarrow P_4$$

Sudakov decomposition

$$p_i = \alpha_i p_1 + \beta_i p_2 + p_{i,\perp}, \quad i = 3, 4$$

 $q(p_1) + q'(p_2)
ightarrow Q(p_3) + Q'(p_4) + H(p_H)$ $p_1 \longrightarrow p_3$

one has

$$\delta_3 \delta_4 pprox rac{m_H^2 + \mathbf{p}_{H,\perp}^2}{s}, \quad \begin{cases} \delta_3 &= 1 - lpha_3 \\ \delta_4 &= 1 - eta_4 \end{cases}$$

Forward limit	
Running coupling effects	Summary 00

$$p_1 \longrightarrow p_3$$

$$W/Z$$

$$W/Z$$

$$P_2 \longrightarrow P_4$$

 $q(p_1) + q'(p_2) \rightarrow Q(p_3) + Q'(p_4) + H(p_H)$

Sudakov decomposition

$$p_i = \alpha_i p_1 + \beta_i p_2 + p_{i,\perp}, \quad i = 3, 4$$

6/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

one has

$$\delta_3 \delta_4 \approx \frac{m_H^2 + \mathbf{p}_{H,\perp}^2}{s}, \quad \begin{cases} \delta_3 &= 1 - \alpha_3 \\ \delta_4 &= 1 - \beta_4 \end{cases}$$

$$p_1 \longrightarrow p_3$$

$$W/Z$$

$$W/Z$$

$$P_2 \longrightarrow P_4$$

 $q(p_1) + q'(p_2) \rightarrow Q(p_3) + Q'(p_4) + H(p_H)$

Sudakov decomposition

$$p_i = \alpha_i p_1 + \beta_i p_2 + p_{i,\perp}, \quad i = 3, 4$$

one has

$$\delta_3 \delta_4 pprox rac{m_H^2 + \mathbf{p}_{H,\perp}^2}{s}, \quad \begin{cases} \delta_3 &= 1 - lpha_3 \\ \delta_4 &= 1 - eta_4 \end{cases}$$

Non-factorizable corrections to Higgs production in VBF

6/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

One-loop amplitudes

 $\mathcal{M}_1 = g_s^2 g_w^2 g_{VVH} T^a_{i_3 i_1} T^a_{i_4 i_2} \mathcal{A}_1$

the color-stripped amplitude \mathcal{A}_1 reads

$$\mathcal{A}_1=\int rac{\mathrm{d}^d k_1}{(2\pi)^d} rac{1}{d_1 d_3 d_4} J^{\mu
u} ilde{J}_{\mu
u}$$

Beyond eikonal	Running coupling effects	Summary
0000	0000	00
	Beyond eikonal ○●○○○	Beyond eikonal Running coupling effects o●ooo ooo

One-loop amplitudes

 $\mathcal{M}_1 = g_s^2 g_w^2 g_{VVH} T^a_{i_3 i_1} T^a_{i_4 i_2} \mathcal{A}_1$

$$\mathcal{A}_1 = \int rac{\mathrm{d}^d k_1}{(2\pi)^d} rac{1}{d_1 d_3 d_4} J^{\mu
u} ilde{J}_{\mu
u}$$

Summary
00

One-loop amplitudes

 $\mathcal{M}_1 = g_s^2 g_w^2 g_{VVH} T^a_{i_3 i_1} T^a_{i_4 i_2} \mathcal{A}_1$

the color-stripped amplitude \mathcal{A}_1 reads

$$\mathcal{A}_1=\int rac{\mathrm{d}^d k_1}{(2\pi)^d} rac{1}{d_1 d_3 d_4} J^{\mu
u} ilde{J}_{\mu
u}$$

$$J^{\mu\nu} = \underbrace{I_{\mu} \atop \mu}_{\mu} \underbrace{I_{\mu} \atop \nu}_{\nu} \underbrace{I_{\mu} \atop \mu}_{\nu} + \underbrace{I_{\mu} \atop \mu}_{\nu} \underbrace{I_{\mu} \atop \mu}_{\nu} + \underbrace{I_{\mu} \atop \mu}_{\nu} \underbrace{I_{\mu} \atop \mu}_{\mu} \underbrace{I_{\mu} \atop \mu}_{\mu}$$

Expansion by regions

$$k_{1} = \alpha_{1}p_{1} + \beta_{1}p_{2} + k_{1,\perp}, \ \frac{\mathrm{d}^{d}k_{1}}{(2\pi)^{d}} = -\frac{s}{2}\frac{\mathrm{d}\alpha_{1}}{2\pi i}\frac{\mathrm{d}\beta_{1}}{2\pi i}\frac{\mathrm{d}^{d-2}\mathbf{k}_{1,\perp}}{(2\pi)^{d-2}}$$

Lateral aller	De contratta da	Device of the state	2
Introduction 000	Beyond eikonal ○●○○○	Running coupling effects	oo Summary

One-loop amplitudes

 $\mathcal{M}_1 = g_s^2 g_w^2 g_{VVH} T^a_{i_3 i_1} T^a_{i_4 i_2} \mathcal{A}_1$

the color-stripped amplitude \mathcal{A}_1 reads

$$\mathcal{A}_1 = \int rac{\mathrm{d}^d k_1}{(2\pi)^d} rac{1}{d_1 d_3 d_4} J^{\mu
u} \widetilde{J}_{\mu
u}$$

Introduction

Beyond eikonal

Expansion by regions

$$k_{1} = \alpha_{1} p_{1} + \beta_{1} p_{2} + k_{1,\perp}, \ \frac{\mathrm{d}^{d} k_{1}}{(2\pi)^{d}} = -\frac{s}{2} \frac{\mathrm{d} \alpha_{1}}{2\pi i} \frac{\mathrm{d} \beta_{1}}{2\pi i} \frac{\mathrm{d}^{d-2} \mathbf{k}_{1,\perp}}{(2\pi)^{d-2}}$$

		α_1	β_1	$\mathbf{k}_{1,\perp}$	\mathcal{M}_1	
	G	λ	λ	$\sqrt{\lambda}$	-2	
	G-S	λ	$\sqrt{\lambda}$	$\sqrt{\lambda}$	-2	
	S	$\sqrt{\lambda}$	$\sqrt{\lambda}$	$\sqrt{\lambda}$	-2	
	С	1	λ	$\sqrt{\lambda}$	-3/2	
	Н	1	1	1	0	
R	unning co	upling eff	ects			Summary 00

Non-factorizable corrections to Higgs production in VBF

7/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

One-loop amplitudes

 $\mathcal{M}_1 = g_s^2 g_w^2 g_{VVH} T^a_{i_3 i_1} T^a_{i_4 i_2} \mathcal{A}_1$

the color-stripped amplitude \mathcal{A}_1 reads

$$\mathcal{A}_1 = \int \frac{\mathrm{d}^d k_1}{(2\pi)^d} \frac{1}{d_1 d_3 d_4} J^{\mu\nu} \tilde{J}_{\mu\nu}$$

Introduction

Beyond eikonal ○●○○○

Expansion by regions

$$k_{1} = \alpha_{1} p_{1} + \beta_{1} p_{2} + k_{1,\perp}, \ \frac{\mathrm{d}^{d} k_{1}}{(2\pi)^{d}} = -\frac{s}{2} \frac{\mathrm{d} \alpha_{1}}{2\pi i} \frac{\mathrm{d} \beta_{1}}{2\pi i} \frac{\mathrm{d}^{d-2} \mathbf{k}_{1,\perp}}{(2\pi)^{d-2}}$$

		α_1	β_1	${f k}_{1,\perp}$	\mathcal{M}_1	
	G	λ	λ	$\sqrt{\lambda}$	-2	
	G-S	λ	$\sqrt{\lambda}$	$\sqrt{\lambda}$	-3/2	
	S	$\sqrt{\lambda}$	$\sqrt{\lambda}$	$\sqrt{\lambda}$	-1	
	С	1	λ	$\sqrt{\lambda}$	0	
	Н	1	1	1	0	
R	unning col 000	upling eff	ects			Summary 00

Non-factorizable corrections to Higgs production in VBF

7/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

Two-loop amplitudes

with the current $J^{\mu
u
ho}$

Introduction Beyond eikonal Running coupling effects Summa 000 000000000000000000000000000000000000	Introduction 000	Beyond eikonal ○○●○○	Running coupling effects	Summary 00
---	---------------------	-------------------------	--------------------------	---------------

Two-loop amplitudes

with the current $J^{\mu u ho}$

Only the Glauber and mixed regions contribute!

Introduction	Beyond eikonal	Running coupling effects	Summary
000	0000	0000	00

Factorization of amplitudes

$$\mathcal{M}_{1} = i \frac{g_{s}^{2}}{4\pi} T_{i_{3}i_{1}}^{a} T_{i_{4}i_{2}}^{a} \mathcal{M}_{0} \mathcal{C}_{1}, \quad \mathcal{M}_{2} = -\frac{1}{2} \frac{g_{s}^{4}}{(4\pi)^{2}} \left(\frac{1}{2} \{T^{a}, T^{b}\}\right)_{i_{3}i_{1}} \left(\frac{1}{2} \{T^{a}, T^{b}\}\right)_{i_{4}i_{2}} \mathcal{M}_{0} \mathcal{C}_{2}$$

Introduction	Beyond eikonal	Running coupling effects	Summary
000	○○○●○		00

Factorization of amplitudes

$$\mathcal{M}_{1} = i \frac{g_{s}^{2}}{4\pi} T_{i_{3}i_{1}}^{a} T_{i_{4}i_{2}}^{a} \mathcal{M}_{0} \mathcal{C}_{1}, \quad \mathcal{M}_{2} = -\frac{1}{2} \frac{g_{s}^{4}}{(4\pi)^{2}} \left(\frac{1}{2} \{T^{a}, T^{b}\}\right)_{i_{3}i_{1}} \left(\frac{1}{2} \{T^{a}, T^{b}\}\right)_{i_{4}i_{2}} \mathcal{M}_{0} \mathcal{C}_{2}$$

The functions C_i read

$$\begin{split} \mathcal{C}_{1} &= 2 \int \frac{\mathrm{d}^{d-2} \mathbf{k}_{1,\perp}}{(2\pi)^{1-2\epsilon}} \frac{(\mathbf{p}_{3,\perp}^{2} + m_{V}^{2})(\mathbf{p}_{4,\perp}^{2} + m_{V}^{2})}{\Delta_{1} \Delta_{3,1} \Delta_{4,1}} \times \Omega_{1} \\ \mathcal{C}_{2} &= 4 \int \frac{\mathrm{d}^{d-2} \mathbf{k}_{1,\perp}}{(2\pi)^{1-2\epsilon}} \frac{\mathrm{d}^{d-2} \mathbf{k}_{2,\perp}}{(2\pi)^{1-2\epsilon}} \frac{(\mathbf{p}_{3,\perp}^{2} + m_{V}^{2})(\mathbf{p}_{4,\perp}^{2} + m_{V}^{2})}{\Delta_{1} \Delta_{2} \Delta_{3,12} \Delta_{4,12}} \times \Omega_{12} \end{split}$$

Introduction	Beyond eikonal ○○○●○	Running coupling effects	Summary 00
--------------	-------------------------	--------------------------	---------------

Factorization of amplitudes

$$\mathcal{M}_{1} = i \frac{g_{s}^{2}}{4\pi} T_{i_{s}i_{1}}^{a} T_{i_{4}i_{2}}^{a} \mathcal{M}_{0} \mathcal{C}_{1}, \quad \mathcal{M}_{2} = -\frac{1}{2} \frac{g_{s}^{4}}{(4\pi)^{2}} \left(\frac{1}{2} \{T^{a}, T^{b}\}\right)_{i_{s}i_{1}} \left(\frac{1}{2} \{T^{a}, T^{b}\}\right)_{i_{4}i_{2}} \mathcal{M}_{0} \mathcal{C}_{2}$$

The functions C_i read

$$\begin{split} \mathcal{C}_{1} &= 2 \int \frac{\mathrm{d}^{d-2} \mathbf{k}_{1,\perp}}{(2\pi)^{1-2\epsilon}} \frac{(\mathbf{p}_{3,\perp}^{2} + m_{V}^{2})(\mathbf{p}_{4,\perp}^{2} + m_{V}^{2})}{\Delta_{1} \Delta_{3,1} \Delta_{4,1}} \times \Omega_{1} \\ \mathcal{C}_{2} &= 4 \int \frac{\mathrm{d}^{d-2} \mathbf{k}_{1,\perp}}{(2\pi)^{1-2\epsilon}} \frac{\mathrm{d}^{d-2} \mathbf{k}_{2,\perp}}{(2\pi)^{1-2\epsilon}} \frac{(\mathbf{p}_{3,\perp}^{2} + m_{V}^{2})(\mathbf{p}_{4,\perp}^{2} + m_{V}^{2})}{\Delta_{1} \Delta_{2} \Delta_{3,12} \Delta_{4,12}} \times \Omega_{12} \end{split}$$

with

$$\Omega_{i} = 1 - \delta_{3} \left(\frac{m_{V}^{2}}{\mathbf{p}_{3,\perp}^{2} + m_{V}^{2}} + \frac{m_{V}^{2}}{\Delta_{3,i}} \right) - \delta_{4} \left(\frac{m_{V}^{2}}{\mathbf{p}_{4,\perp}^{2} + m_{V}^{2}} + \frac{m_{V}^{2}}{\Delta_{4,i}} \right)$$

9/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

Numerical results

$$\mathrm{d}\hat{\sigma}_{\mathrm{nf}}^{\mathrm{NNLO}} = \frac{N_c^2-1}{4N_c^2} \; \alpha_s^2 \; \mathcal{C}_{\mathrm{nf}} \; \mathrm{d}\hat{\sigma}^{\mathrm{LO}}, \qquad \mathcal{C}_{\mathrm{nf}} = \mathcal{C}_1^2 - \mathcal{C}_2 \,,$$

Introduction	Beyond eikonal ○○○○●	Running coupling effects	Summary
000	00000	0000	00

Numerical results

For 13 TeV at LHC

$$\begin{split} \mathrm{d}\hat{\sigma}_{\mathrm{nf}}^{\mathrm{NNLO}} &= \frac{N_c^2 - 1}{4N_c^2} \,\,\alpha_s^2 \,\,\mathcal{C}_{\mathrm{nf}} \,\,\mathrm{d}\hat{\sigma}^{\mathrm{LO}}, \qquad \mathcal{C}_{\mathrm{nf}} = \mathcal{C}_1^2 - \mathcal{C}_2 \,, \\ \\ \sigma_{VV} &= (-3.1 + 0.53) \,\,\mathrm{fb} \end{split}$$

Introduction 000	Beyond eikonal	Running coupling effects	Summary

00

Numerical results

$$\mathrm{d}\hat{\sigma}_{\mathrm{nf}}^{\mathrm{NNLO}} = \frac{N_c^2-1}{4N_c^2} \,\, \alpha_s^2 \,\, \mathcal{C}_{\mathrm{nf}} \,\, \mathrm{d}\hat{\sigma}^{\mathrm{LO}}, \qquad \mathcal{C}_{\mathrm{nf}} = \mathcal{C}_1^2 - \mathcal{C}_2 \,,$$

For 13 TeV at LHC

000

10/16 17.10.2023 Ming-Ming Long: Young Scientists Meeting

Scale dependence

• Strong μ_R dependence

$$\mu_F = \mu_R = \frac{m_H}{2} \left[1 + \frac{4\mathbf{p}_{H,\perp}^2}{m_H^2} \right]^{1/4}$$
$$\mathrm{d}\hat{\sigma}_{\mathrm{nf}}^{\mathrm{NNLO}} = \frac{N_c^2 - 1}{4N_c^2} \alpha_s(\mu_R)^2 \,\mathcal{C}_{\mathrm{nf}} \,\mathrm{d}\hat{\sigma}^{\mathrm{LO}}$$

Introduction	Beyond eikonal	Running coupling effects	Summary
000	00000	●000	00

Scale dependence

Strong μ_R dependence

$$\mu_F = \mu_R = \frac{m_H}{2} \left[1 + \frac{4\mathbf{p}_{H,\perp}^2}{m_H^2} \right]^{1/4}$$
$$d\hat{\sigma}_{\rm nf}^{\rm NNLO} = \frac{N_c^2 - 1}{4N_c^2} \alpha_s(\mu_R)^2 \mathcal{C}_{\rm nf} d\hat{\sigma}^{\rm LO}$$

How to reduce the renormalization scale uncertainties?

Introduction	Beyond eikonal	Running coupling effects ●○○○	Summary 00

Scale dependence

Strong μ_R dependence

$$\mu_F = \mu_R = rac{m_H}{2} \left[1 + rac{4 \mathbf{p}_{H,\perp}^2}{m_H^2}
ight]^{1/4}$$

$$\mathrm{d}\hat{\sigma}_{\mathrm{nf}}^{\mathrm{NNLO}} = \frac{N_c^2 - 1}{4N_c^2} \alpha_s(\mu_R)^2 \mathcal{C}_{\mathrm{nf}} \mathrm{d}\hat{\sigma}^{\mathrm{LO}}$$

How to reduce the renormalization scale uncertainties?

 It will compensate for the μ_R dependence of α_s.

Introduction 000	Beyond eikonal	Running coupling effects	Summary 00

Fermion bubble

We only consider the leading eikonal approximation. To include the effects of running α_s , replace $\Delta_{1,2}$ in $C_{1,2}$ [Brodsky, Lepage, Mackenzie 1983]

$$\begin{split} \tilde{\Delta}_{i} &= \Delta_{i} \, \left(1 + \frac{\beta_{0} \alpha_{s}}{2\pi} \ln \frac{\mathbf{k}_{i,\perp}^{2}}{\mu_{R}^{2} e^{5/3}} \right) \\ \mathcal{C}_{\mathrm{nf}} &= 4 \int \frac{\mathrm{d}^{2} \mathbf{k}_{1,\perp}}{(2\pi)} \frac{\mathrm{d}^{2} \mathbf{k}_{2,\perp}}{(2\pi)} \frac{\Delta_{3} \Delta_{4}}{\tilde{\Delta}_{1} \tilde{\Delta}_{2}} \left(\frac{\Delta_{3} \Delta_{4}}{\Delta_{3,1} \Delta_{4,1} \Delta_{3,2} \Delta_{4,2}} - \frac{1}{\Delta_{3,12} \Delta_{4,12}} \right) \end{split}$$

we obtain

$$\mathcal{C}_{\rm nf} = \mathcal{C}_{\rm nf}^{(0)} + \frac{\alpha_s \beta_0}{\pi} \left(\mathcal{C}_{\rm nf}^{(0)} \ln \left(\frac{\mu_R^2 e^{5/3}}{m_V^2} \right) + \mathcal{C}_{\rm nf}^{(1)} \right) + \mathcal{O}(\alpha_s^2 \beta_0^2)$$

where

$$C_{nf}^{(0)} = \left(C_{1}^{(0)}\right)^{2} - 2C_{1}^{(1)}, \qquad C_{nf}^{(1)} = C_{1}^{(0)}C_{1}^{(1)} - 3C_{1}^{(2)} + 2\zeta_{3}$$

$$\begin{array}{c} \text{Beyond eikonal} \\ \text{Beyond eikonal} \\ \text{OOOO} \end{array} \qquad \qquad \begin{array}{c} \text{Bunning coupling effects} \\ \text{B$$

Karlsruhe Institute of

Fermion bubble

We only consider the leading eikonal approximation. To include the effects of running α_s , replace $\Delta_{1,2}$ in $C_{1,2}$ [Brodsky, Lepage, Mackenzie 1983]

$$\begin{split} \tilde{\Delta}_i &= \Delta_i \, \left(1 + \frac{\beta_0 \alpha_s}{2\pi} \ln \frac{\mathbf{k}_{i,\perp}^2}{\mu_R^2 e^{5/3}} \right) \\ \mathcal{C}_{\mathrm{nf}} &= 4 \int \frac{\mathrm{d}^2 \mathbf{k}_{1,\perp}}{(2\pi)} \frac{\mathrm{d}^2 \mathbf{k}_{2,\perp}}{(2\pi)} \frac{\Delta_3 \Delta_4}{\tilde{\Delta}_1 \tilde{\Delta}_2} \left(\frac{\Delta_3 \Delta_4}{\Delta_{3,1} \Delta_{4,1} \Delta_{3,2} \Delta_{4,2}} - \frac{1}{\Delta_{3,12} \Delta_{4,12}} \right) \end{split}$$

we obtain

$$\begin{split} \mathcal{C}_{\mathrm{nf}} &= \mathcal{C}_{\mathrm{nf}}^{(0)} + \frac{\alpha_s \beta_0}{\pi} \left(\mathcal{C}_{\mathrm{nf}}^{(0)} \ln \left(\frac{\mu_R^2 e^{5/3}}{m_V^2} \right) + \mathcal{C}_{\mathrm{nf}}^{(1)} \right) + \mathcal{O}(\alpha_s^2 \beta_0^2) \qquad \text{the auxiliary function} \\ \text{here} \qquad \qquad \mathcal{C}_1(\nu) &= -2 \int \frac{\mathrm{d}^2 \mathbf{k}_{1,\perp}}{2\pi} \; \frac{\Delta_3 \; \Delta_4 \; m_V^{2\nu}}{\Delta_1^{1+\nu} \Delta_2 + \Delta_{4,1}} \end{split}$$

where

$$C_{nf}^{(0)} = (C_1^{(0)})^2 - 2C_1^{(1)}, \qquad C_{nf}^{(1)} = C_1^{(0)}C_1^{(1)} - 3C_1^{(2)} + 2\zeta_3$$
Introduction
Beyond eikonal
Beyond eikonal
Beyond eikonal

Ming-Ming Long: Young Scientists Meeting 12/16 17.10.2023

Running coupling effects 0000

Summary 00

$$\begin{split} C_{1}^{(0)} &= \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\ln r_{2} - 2 \ln r_{12} + \frac{r_{2} - r_{1}}{r_{2}} \right] \\ C_{1}^{(1)} &= \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\frac{1}{2} \ln^{2} r_{12} - \ln r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right] \\ &+ 2 \ln \frac{r_{2}}{r_{12}} + \frac{\pi^{2}}{6} - \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) \right] \\ C_{1}^{(2)} &= \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[-\frac{1}{6} \ln^{3} r_{12} + \frac{1}{2} \ln^{2} r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right. \\ &+ \frac{\pi^{2}}{6} \frac{r_{2} - r_{1}}{r_{2}} + \ln^{2} \left(\frac{r_{2}}{r_{12}} \right) \ln \frac{r_{1}}{r_{12}} - \ln r_{12} \left(\frac{\pi^{2}}{6} + 2 \ln \frac{r_{2}}{r_{12}} - \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) \right) \\ &- \frac{r_{2} - r_{1}}{r_{2}} \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) - \ln \frac{r_{2}}{r_{12}} \left(\frac{\pi^{2}}{6} - \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) \right) + 2\mathrm{Li}_{3} \left(\frac{r_{2}}{r_{12}} \right) - 2\zeta_{3} \right] \end{split}$$

$$C_{1}^{(0)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\ln r_{2} - 2 \ln r_{12} + \frac{r_{2} - r_{1}}{r_{2}} \right]$$

$$C_{1}^{(1)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\frac{1}{2} \ln^{2} r_{12} - \ln r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right]$$

$$+2\ln\frac{r_2}{r_{12}}+\frac{\pi^2}{6}-\mathrm{Li}_2\left(\frac{r_1}{r_{12}}\right)$$

$$C_{1}^{(2)} = \int_{0}^{1} \mathrm{d}t \, \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[-\frac{1}{6} \ln^{3} r_{12} + \frac{1}{2} \ln^{2} r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right]$$
$$+ \frac{\pi^{2}}{6} \frac{r_{2} - r_{1}}{r_{2}} + \ln^{2} \left(\frac{r_{2}}{r_{12}} \right) \ln \frac{r_{1}}{r_{12}} - \ln r_{12} \left(\frac{\pi^{2}}{6} + 2 \ln \frac{r_{2}}{r_{12}} - \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) \right)$$
$$- \frac{r_{2} - r_{1}}{r_{2}} \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) - \ln \frac{r_{2}}{r_{12}} \left(\frac{\pi^{2}}{6} - \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) \right) + 2\mathrm{Li}_{3} \left(\frac{r_{2}}{r_{12}} \right) - 2\zeta_{3}$$

We used

$$\Delta_x = 1 + x$$

$$\Delta_y = 1 + y$$

$$r_1 = xt + y(1 - t) - zt(1 - t)$$

$$r_2 = 1 + zt(1 - t)$$

$$r_{12} = r_1 + r_2$$

and three dimensionless quantities

$$x = rac{\mathbf{p}_{3,\perp}^2}{m_V^2}, \; y = rac{\mathbf{p}_{4,\perp}^2}{m_V^2}, \; z = rac{\mathbf{p}_{H,\perp}^2}{m_V^2}$$

$$C_{1}^{(0)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\ln r_{2} - 2 \ln r_{12} + \frac{r_{2} - r_{1}}{r_{2}} \right]$$

$$C_{1}^{(1)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\frac{1}{2} \ln^{2} r_{12} - \ln r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right]$$

$$+2\ln\frac{r_2}{r_{12}}+\frac{\pi^2}{6}-\text{Li}_2\left(\frac{r_1}{r_{12}}\right)\right]$$

$$\begin{aligned} C_{1}^{(2)} &= \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[-\frac{1}{6} \ln^{3} r_{12} + \frac{1}{2} \ln^{2} r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right. \\ &+ \frac{\pi^{2}}{6} \frac{r_{2} - r_{1}}{r_{2}} + \ln^{2} \left(\frac{r_{2}}{r_{12}} \right) \ln \frac{r_{1}}{r_{12}} - \ln r_{12} \left(\frac{\pi^{2}}{6} + 2 \ln \frac{r_{2}}{r_{12}} - \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) \right) \\ &- \frac{r_{2} - r_{1}}{r_{2}} \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) - \ln \frac{r_{2}}{r_{12}} \left(\frac{\pi^{2}}{6} - \mathrm{Li}_{2} \left(\frac{r_{1}}{r_{12}} \right) \right) + 2\mathrm{Li}_{3} \left(\frac{r_{2}}{r_{12}} \right) - 2\zeta_{3} \end{aligned}$$

We used

$$\begin{aligned} \Delta_x &= 1 + x \\ \Delta_y &= 1 + y \\ r_1 &= xt + y(1 - t) - zt(1 - t) \\ r_2 &= 1 + zt(1 - t) \\ r_{12} &= r_1 + r_2 \end{aligned}$$

and three dimensionless quantities

$$x = rac{\mathbf{p}_{3,\perp}^2}{m_V^2}, \ y = rac{\mathbf{p}_{4,\perp}^2}{m_V^2}, \ z = rac{\mathbf{p}_{H,\perp}^2}{m_V^2}$$

robust but slow

$$C_{1}^{(0)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\ln r_{2} - 2 \ln r_{12} + \frac{r_{2} - r_{1}}{r_{2}} \right]$$

$$C_{1}^{(1)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\frac{1}{2} \ln^{2} r_{12} - \ln r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right]$$

$$+ 2 \ln \frac{r_2}{r_{12}} + \frac{\pi^2}{6} - \text{Li}_2\left(\frac{r_1}{r_{12}}\right) \bigg]$$

$$C_1^{(2)} = \int_0^1 dt \, \frac{\Delta_x \Delta_y}{r_{12}^2} \bigg[-\frac{1}{6} \ln^3 r_{12} + \frac{1}{2} \ln^2 r_{12} \left(\frac{r_2 - r_1}{r_2} + \ln \frac{r_2}{r_{12}}\right) \bigg]$$

$$+\frac{\pi^{2}}{6}\frac{r_{2}-r_{1}}{r_{2}}+\ln^{2}\left(\frac{r_{2}}{r_{12}}\right)\ln\frac{r_{1}}{r_{12}}-\ln r_{12}\left(\frac{\pi^{2}}{6}+2\ln\frac{r_{2}}{r_{12}}-\mathrm{Li}_{2}\left(\frac{r_{1}}{r_{12}}\right)\right)$$
$$-\frac{r_{2}-r_{1}}{r_{2}}\mathrm{Li}_{2}\left(\frac{r_{1}}{r_{12}}\right)-\ln\frac{r_{2}}{r_{12}}\left(\frac{\pi^{2}}{6}-\mathrm{Li}_{2}\left(\frac{r_{1}}{r_{12}}\right)\right)+2\mathrm{Li}_{3}\left(\frac{r_{2}}{r_{12}}\right)-2\zeta_{3}$$

We used

/

$$\begin{aligned} \Delta_x &= 1 + x \\ \Delta_y &= 1 + y \\ r_1 &= xt + y(1 - t) - zt(1 - t) \\ r_2 &= 1 + zt(1 - t) \\ r_{12} &= r_1 + r_2 \end{aligned}$$

and three dimensionless quantities

$$x = rac{\mathbf{p}_{3,\perp}^2}{m_V^2}, \; y = rac{\mathbf{p}_{4,\perp}^2}{m_V^2}, \; z = rac{\mathbf{p}_{H,\perp}^2}{m_V^2}$$

- robust but slow
- analytic expressions (?)

$$C_{1}^{(0)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\ln r_{2} - 2 \ln r_{12} + \frac{r_{2} - r_{1}}{r_{2}} \right]$$

$$C_{1}^{(1)} = \int_{0}^{1} \mathrm{d}t \; \frac{\Delta_{x} \Delta_{y}}{r_{12}^{2}} \left[\frac{1}{2} \ln^{2} r_{12} - \ln r_{12} \left(\frac{r_{2} - r_{1}}{r_{2}} + \ln \frac{r_{2}}{r_{12}} \right) \right]$$

$$+ 2 \ln \frac{r_2}{r_{12}} + \frac{\pi^2}{6} - \text{Li}_2\left(\frac{r_1}{r_{12}}\right) \bigg]$$

$$C_1^{(2)} = \int_0^1 \mathrm{d}t \, \frac{\Delta_x \Delta_y}{r_{12}^2} \bigg[-\frac{1}{6} \ln^3 r_{12} + \frac{1}{2} \ln^2 r_{12} \left(\frac{r_2 - r_1}{r_2} + \ln \frac{r_2}{r_{12}}\right) \bigg]$$

$$+\frac{\pi^{2}}{6}\frac{r_{2}-r_{1}}{r_{2}}+\ln^{2}\left(\frac{r_{2}}{r_{12}}\right)\ln\frac{r_{1}}{r_{12}}-\ln r_{12}\left(\frac{\pi^{2}}{6}+2\ln\frac{r_{2}}{r_{12}}-\mathrm{Li}_{2}\left(\frac{r_{1}}{r_{12}}\right)\right)\\-\frac{r_{2}-r_{1}}{r_{2}}\mathrm{Li}_{2}\left(\frac{r_{1}}{r_{12}}\right)-\ln\frac{r_{2}}{r_{12}}\left(\frac{\pi^{2}}{6}-\mathrm{Li}_{2}\left(\frac{r_{1}}{r_{12}}\right)\right)+2\mathrm{Li}_{3}\left(\frac{r_{2}}{r_{12}}\right)-2\zeta_{3}\right]$$

We used

$$\begin{aligned} \Delta_x &= 1 + x \\ \Delta_y &= 1 + y \\ r_1 &= xt + y(1 - t) - zt(1 - t) \\ r_2 &= 1 + zt(1 - t) \\ r_{12} &= r_1 + r_2 \end{aligned}$$

and three dimensionless quantities

$$x = rac{\mathbf{p}_{3,\perp}^2}{m_V^2}, \; y = rac{\mathbf{p}_{4,\perp}^2}{m_V^2}, \; z = rac{\mathbf{p}_{H,\perp}^2}{m_V^2}$$

- robust but slow
- analytic expressions (?)

YES!

Numerical results

For 13 TeV at LHC

 $\sigma_{\rm nf}^{\rm LO} = -2.97^{-0.69}_{+0.52}~{
m fb}$

 $\sigma_{\rm nf}^{\rm NLO} = -3.20^{-0.01}_{+0.14} \, {\rm fb}$

Introduction

Beyond eikonal

Running coupling effects

Summary 00

Numerical results

For 13 TeV at LHC

$$\sigma_{\rm nf}^{\rm LO} = -2.97^{-0.69}_{+0.52} \, {\rm fb}$$

$$\mathcal{O}(20\%)$$

$$\mathcal{O}(5\%)$$

$$\sigma_{\rm nf}^{\rm NLO} = -3.20^{-0.01}_{+0.14} \, {\rm fb}$$

Introduction Beyond eikonal Running coupling effects	Summary 00
--	---------------

Numerical results

 Studies on the Higgs production in VBF are very advanced, thanks to the impressive calculations of factorizable corrections up to N3LO QCD.

Non-factorizable corrections are color-suppressed but π² enhanced. They might be equally important as the N3LO factorizable corrections.

Introduction

Beyond eikonal

Running coupling effects

Summary ●○

- Studies on the Higgs production in VBF are very advanced, thanks to the impressive calculations of factorizable corrections up to N3LO QCD.
- The expansion of the complicated five-point amplitudes around the forward limit is highly non-trivial. But the first power correction is surprisingly compact and relatively simple. That deeply profit from the special kinematics of VBF.
- The new sub-eikonal contribution changes the current estimate of NNLO non-factorizable corrections to VBF cross section by about 20%.

- Karlsruhe Institute of Technology
- Non-factorizable corrections are color-suppressed but π² enhanced. They might be equally important as the N3LO factorizable corrections.

Introduction

Beyond eikonal

Running coupling effects

Summary ●○

- Studies on the Higgs production in VBF are very advanced, thanks to the impressive calculations of factorizable corrections up to N3LO QCD.
- The expansion of the complicated five-point amplitudes around the forward limit is highly non-trivial. But the first power correction is surprisingly compact and relatively simple. That deeply profit from the special kinematics of VBF.
- The new sub-eikonal contribution changes the current estimate of NNLO non-factorizable corrections to VBF cross section by about 20%.

- Karlsruhe Institute of Technology
- Non-factorizable corrections are color-suppressed but π² enhanced. They might be equally important as the N3LO factorizable corrections.
- The strong dependence of renormalization scale of non-factorizable contribution are reduced by computing the three-loop $\mathcal{O}(\beta_0 \alpha_s^3)$ corrections.
- They account for the effects of running coupling constant, reducing the dependence on renormalization scale from O(20%) to O(5%), and thus stabilizing the theoretical predictions.

15/16 17 10 2023	Mina-Mina Lona: Young Scientists Meeting	Non-factorizable corrections	to Higgs production in VBE
Introduction	Beyond eikonal	Running coupling effects	Summary ●○

15/16

- Studies on the Higgs production in VBF are very advanced, thanks to the impressive calculations of factorizable corrections up to N3LO QCD.
- The expansion of the complicated five-point amplitudes around the forward limit is highly non-trivial. But the first power correction is surprisingly compact and relatively simple. That deeply profit from the special kinematics of VBF.
- The new sub-eikonal contribution changes the current estimate of NNLO non-factorizable corrections to VBF cross section by about 20%.

- Non-factorizable corrections are color-suppressed but π^2 enhanced. They might be equally important as the N3LO factorizable corrections.
- The strong dependence of renormalization scale of non-factorizable contribution are reduced by computing the three-loop $\mathcal{O}(\beta_0 \alpha_s^3)$ corrections.
- They account for the effects of running coupling constant, reducing the dependence on renormalization scale from $\mathcal{O}(20\%)$ to $\mathcal{O}(5\%)$, and thus stabilizing the theoretical predictions.

We have a much better understanding of the NNLO non-factorizable corrections to VBF. Introduction Bevond eikonal Running coupling effects Summary . Ming-Ming Long: Young Scientists Meeting 17.10.2023 Non-factorizable corrections to Higgs production in VBF

Thank you for your attention!

Setup in Monte Carlo

PDFs: NNPDF31-nnlo-as-118

VBF cuts

 $\begin{array}{ll} \text{anti-}k_t & 2 \text{ jets, } R = 0.4 \\ \text{jet transverse momentum} & p_{j,\perp} > 25 \text{ GeV} \\ \text{jet rapidity} & |y_j| < 4.5 \\ \text{jet separation} & |y_{j_1} - y_{j_2}| > 4.5 \\ \text{invariant mass of jets} & M_{jj} > 600 \text{ GeV} \\ \text{separate hemispheres} & y_{j_1}y_{j_2} < 0 \end{array}$

Backup slides

٠