

Collaborative Research Center TRR 257

Back to the Roots: Tree-Based Algorithms for Weakly Supervised Anomaly Detection

Marie Hein

with Finke, Kasieczka, Krämer, Mück, Prangchaikul, Quadfasel, Shih, Sommerhalder

CRC Young Scientists Meeting, October 18, 2023

- 1. Anomaly Detection Methods
- 2. The Problem
- 3. The Solution
- 4. The Physics Gain

- BSM physics searches are well motivated
- Classic search approaches
 - → Very sensitive searches for specific new physics models
 - → Less sensitive signal model agnostic searches, e.g. resonance searches
- Our goal: Improve sensitivity of model agnostic searches
 - → Reason for lacking sensitivity: often only performed in one variable
 - → Use pattern recognition capability of machine learning in high dimensional feature space to gain higher sensitivity

Anomaly Detection Methods

Classification Problem

- Goal: To achieve a better signal to background ratio
- An optimal classifier is given by the likelihood ratio

$$R_{\text{optimal}}(x) = \frac{p_{\mathcal{S}}(x)}{p_{\mathcal{B}}(x)}, \qquad (1$$

where p_S and p_B are the signal and background densities, respectively.

- → Can be approximated with a supervised classifier
- → Problem: Labels are not available on experimental data

Weakly Supervised Classification

- Any monotonic function of a classifier has the same decision boundaries
- Use two mixed datasets with

$$p_i(x) = f_i p_S(x) + (1 - f_i) p_B(x)$$
 (2)

Classifier gives likelihood ratio

$$R_{\text{mixed}} = \frac{f_1 R_{\text{optimal}}(x) + (1 - f_1)}{f_2 R_{\text{optimal}}(x) + (1 - f_2)}.$$
 (3)

- → Monotonically increasing function of R_{optimal}(x) as long as f₁ > f₂
- → Weakly supervised classifier/ CWOLA [Methodiev, Nachman, Thaler, '17]

How can weak supervision be applied to real data?

Recreated from [Hallin et al., '21]

The Problem

LHC Olympics R&D dataset

- Benchmark dataset for anomaly detection
- QCD dijet background
- ▶ Resonant signal of $W' \rightarrow XY$ with $X/Y \rightarrow qq$
- m_W['] = 3.5 TeV, m_X = 0.5 TeV, m_Y = 0.1 TeV
- Baseline features used for the classification
 - → Resonant feature m_{JJ}
 - $\rightarrow m_{J1}, \Delta m_J, \tau_{21,J1}, \tau_{21,J2}$
- SR: 0.4 TeV bin around m_{W'}
 - Inject 1000 signal events into dataset

Back to the Boots 10

Model agnostic setup includes uninformative features

The Problem

- → Need robustness against uninformative features
- Simulate using N Gaussian distributed features
- Significant performance drop observed already with N = 2

The Solution

Decision Trees

- Classical machine learning method
- Data is split recursively based on a set of input features
- To create a new node, both the feature and the split values are optimized
- For additional expressivity, ensembles of trees are used
 - → Gradient boosting: learn residuals of previous predictions with subsequent trees
- Deal well with tabular data, which our high-level features are

Robustness against uninformative features

- BDT is much more robust against uninformative features
- Performance stable up to 10 Gaussian features

The Physics Gain

- As sensitivity reaches higher number of features, we can include more physics features in an analysis
- Test by including additional subjettiness based features

Т

Name	# features	Features
Baseline	4	$\{m_{J_1}, \Delta m_J, \tau_{21}^{\beta=1,J_1}, \tau_{21}^{\beta=1,J_2}\}$
Extended 1	10	$\{m_{J_1}, \ \Delta m_J, \ au_{N,N-1}^{eta=1,J_1}, \ au_{N,N-1}^{eta=1,J_2}\} \ { m for} \ 2 \leq N \leq 5$
Extended 2	12	$\{m_{J_1}, \ \Delta m_J, \ au_N^{eta=1,J_1}, \ au_N^{eta=1,J_2}\}$ for $N\leq 5$
Extended 3	56	$\{m_{J_1}, \ \Delta m_J, \ au_N^{eta, J_1}, \ au_N^{eta, J_2}\}$ for $N \leq 9$ and $eta \in \{0.5, 1, 2\}$

Results for different feature sets

BDT well behaved with respect to information content of input feature set

Not true for NN

Results for different signal

Being able to use more features increases the sensitivity to other signal models

▶ Test this by considering resonant signal of W' \rightarrow XY with X/Y \rightarrow qqq

Conclusion

Summary

- BDTs are robust against uninformative features in the weakly supervised setup
- BDTs are well behaved with respect to the information content of an input set
 - → Ability to use larger input feature sets in an analysis
- Larger input feature sets allow for more model agnosticity

Outlook

- Apply the improved classifier to methods defining the background template from data
- Test method on different signal models

Backup slides

2.5*σ* -

 2.0σ

 1.0σ

0.5*σ*

N_{sig}/\N_{bkg}

14

14

Baseline

14 14

14 14

14

14

14

50k

100k

N_{bka}

150k

Ensembling

Baseline performances

1D scan

Marie Hein - marie.hein@rwth-aachen.de

RWTH Aachen University Templergraben 55 52056 Aachen

www.rwth-aachen.de