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Motivation

I BSM physics searches are well motivated

I Classic search approaches

: Very sensitive searches for specific new physics models
: Less sensitive signal model agnostic searches, e.g. resonance searches

I Our goal: Improve sensitivity of model agnostic searches

: Reason for lacking sensitivity: often only performed in one variable
: Use pattern recognition capability of machine learning in high dimensional

feature space to gain higher sensitivity

3
Back to the Roots
Marie Hein — October 18, 2023



Anomaly Detection Methods
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Classification Problem

I Goal: To achieve a better signal to
background ratio

I An optimal classifier is given by the
likelihood ratio

Roptimal(x) =
pS(x)

pB(x)
, (1)

where pS and pB are the signal and
background densities, respectively.

: Can be approximated with a
supervised classifier

: Problem: Labels are not available
on experimental data

Classifier
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Weakly Supervised Classification

I Any monotonic function of a classifier has
the same decision boundaries

I Use two mixed datasets with

pi (x) = fi pS(x) + (1− fi ) pB(x) (2)

I Classifier gives likelihood ratio

Rmixed =
f1 Roptimal(x) + (1− f1)

f2 Roptimal(x) + (1− f2)
. (3)

: Monotonically increasing function
of Roptimal(x) as long as f1 > f2

: Weakly supervised classifier/
CWOLA [Methodiev, Nachman, Thaler, ’17]

Classifier
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How can weak supervision be
applied to real data?

a.u.

mSB SR SB

x x x

Recreated from [Hallin et al., ’21]

Bkg

template
SR

data

Classifier
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The Problem
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LHC Olympics R&D dataset
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I Benchmark dataset for anomaly detection

I QCD dijet background

I Resonant signal of W’→XY with
X/Y→qq

I mW’ = 3.5TeV, mX = 0.5TeV,
mY = 0.1TeV

I Baseline features used for the
classification

: Resonant feature mJJ
: mJ1, ∆mJ , fi21,J1, fi21,J2

I SR: 0.4TeV bin around mW′

I Inject 1000 signal events into dataset
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The Problem

I Model agnostic setup includes
uninformative features

: Need robustness against
uninformative features

I Simulate using N Gaussian distributed
features

I Significant performance drop observed
already with N = 2 0.0 0.2 0.4 0.6 0.8 1.0
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The Solution
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Decision Trees

I Classical machine learning method

I Data is split recursively based on a set of
input features

I To create a new node, both the feature
and the split values are optimized

I For additional expressivity, ensembles of
trees are used

: Gradient boosting: learn residuals
of previous predictions with
subsequent trees

I Deal well with tabular data, which our
high-level features are

Branch

Input Node Internal Node

Leaf Node
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Robustness against uninformative
features

I BDT is much more robust against uninformative features

I Performance stable up to 10 Gaussian features
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The Physics Gain
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Feature sets

I As sensitivity reaches higher number of features, we can include more physics
features in an analysis

I Test by including additional subjettiness based features

Name # features Features

Baseline 4 {mJ1 , ∆mJ , fi
˛=1,J1
21 , fi˛=1,J2

21 }

Extended 1 10 {mJ1 , ∆mJ , fi
˛=1,J1
N,N−1 , fi

˛=1,J2
N,N−1} for 2 ≤ N ≤ 5

Extended 2 12 {mJ1 , ∆mJ , fi
˛=1,J1
N , fi˛=1,J2

N } for N ≤ 5

Extended 3 56 {mJ1 , ∆mJ , fi
˛,J1
N , fi˛,J2N } for N ≤ 9 and ˛ ∈ {0.5, 1, 2}
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Results for different feature sets

I BDT well behaved with respect to information content of input feature set

I Not true for NN
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Results for different signal

I Being able to use more features increases the sensitivity to other signal models

I Test this by considering resonant signal of W’→XY with X/Y→qqq
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Conclusion

Summary

I BDTs are robust against uninformative features in the weakly supervised setup

I BDTs are well behaved with respect to the information content of an input set

: Ability to use larger input feature sets in an analysis

I Larger input feature sets allow for more model agnosticity

Outlook

I Apply the improved classifier to methods defining the background template from
data

I Test method on different signal models
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Backup slides
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2D scan
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Ensembling
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Baseline performances
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1D scan
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